Skip to main content
Log in

Numerical modeling of photorefractive crystals for self-adapting external cavity laser mirrors

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The process of refractive index grating formation in a photorefractive crystal, used as the self-adapting spectral filter in an external cavity of a semiconductor laser, is studied using a self-consistent model. The model is based on the Finite Difference solution of the Kukhtarev equations. The results obtained are compared with the ones provided by approximate analytical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • He G.S., Liu S.H.: Physics of Nonlinear Optics. World Science Publishing Co. Pte. Ltd, Singapore (2003)

    Google Scholar 

  • Huot N., Jonathan J.M., Pauliat D.G., Georges P., Brun A., Roosen G.: Laser mode manipulation by intracavity dynamic holography: application to mode selection. Appl. Phys. B 69, 155–157 (1999)

    Article  ADS  Google Scholar 

  • Kukhtarev N.: Kinetics of hologram recording and erasure in electro-optical crystals. Sov. Tech. Phys. Lett. 2(12), 438–440 (1976)

    Google Scholar 

  • Lee W.K., Chan T.S.: Photorefractive hologram writing with high modulation depth in photovoltaic media under different boundary conditions. Opt. Commun. 281(23), 5884–5888 (2008)

    Article  ADS  Google Scholar 

  • Maerten S., Dubreuil N., Pauliat G., Roosen G., Rytz D., Salva T.: Laser diode made single-mode by a self-adaptive photorefractive filter. Opt. Commun. 208(1–3), 183–189 (2002)

    Article  ADS  Google Scholar 

  • Moharam M.G., Gaylord T.K., Magnusson R., Young L.: Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths. J. Appl. Phys. 50(9), 5642–5651 (1979)

    Article  ADS  Google Scholar 

  • Optical Society Of America (ed.): Michael Bass (2nd edn) Handbook of Optics, vol. 2: Devices, Measurements, and Properties (1994)

  • Polyanskiy, M.: RefractiveIndex.INFO: Refractive index database: http://refractiveindex.info (2008–2009)

  • Saxena R., Chang T.Y.: Perturbative analysis of higher-order photorefractive gratings. J. Opt. Soc. Am. B: Opt. Phys. 9(8), 1467–1472 (1992)

    Article  ADS  Google Scholar 

  • Yariv A.: Optical Electronics in Modern Communications. Oxford University Press, New York (1997)

    Google Scholar 

  • Yeh P.: Introduction to Photorefractive Nonlinear optics. Wiley, New York (1993)

    Google Scholar 

  • Zhang Z., Pauliat G., Lim J.J., Bream P.J., Dubreuil N., Kent A.J., Larkins E.C., Sujecki S.: Numerical modeling of high-power selforganizing external cavity lasers. Opt. Quantum Electron. 40(14), 1117–1121 (2009). doi:101007/s11082-009-9299-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Lim, J.J., Dubreuil, N. et al. Numerical modeling of photorefractive crystals for self-adapting external cavity laser mirrors. Opt Quant Electron 41, 681–688 (2009). https://doi.org/10.1007/s11082-010-9376-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-010-9376-0

Keywords

Navigation