Skip to main content
Log in

Accurate radial basis function based neural network approach for analysis of photonic crystal fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a new and an accurate artificial neural network approach (ANN) is presented for the analysis and design of photonic crystal fibers (PCFs). The new ANN approach is based on the radial basis functions which offer a very quick convergence and high efficiency during the ANN learning. The accuracy of the suggested approach is demonstrated via the excellent agreement between the results obtained using the presented approach and the results of the full vectorial finite difference method (FVFDM). In addition, a new design of highly birefringence PCF with low losses for the two polarized modes is presented using the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal G.P.: Fiber-Optic Communication Systems, 2nd edn, pp. 41–42. Wiley, New York (1997)

    Google Scholar 

  • Benabid F.: Hollow-core photonic bandgap fibre: new light guidance for new science and technology. Philos. Trans. R. Soc. A. 364, 3439–3462 (2006). doi:10.1098/rsta.2006.1908

    Article  MATH  ADS  Google Scholar 

  • Birks T.A., Knight J.C., Russell P.S.J.: Endlessly single-mode photonic crystal fibre. Opt. Lett. 22, 961–963 (1997). doi:10.1364/OL.22.000961

    Article  ADS  Google Scholar 

  • Broeng J., Mogilevstev D., Barkou S.E., Bjarklev A.: Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5, 305–330 (1999). doi:10.1006/ofte.1998.0279

    Article  ADS  Google Scholar 

  • Campbell S., McPhedran R.C., Martijnde Sterke C., Botten L.C.: Differential multipole method for microstructured optical fibers. J. Opt. Soc. Am. B 21, 1919–1928 (2004)

    ADS  Google Scholar 

  • Christodoulou C., Georgiopoulos M.: Applications of neural networks in electromagnetics. Artech House Publishers, Norwood (2001)

    Google Scholar 

  • Cohen L.G., Marcuse D., Mammel W.L.: Radiating leak-mode losses in single-mode light guides with depressed-index claddings. IEEE J. Quantum Electron. 18, 1467–1472 (1982). doi:10.1109/JQE.1982.1071409

    Article  ADS  Google Scholar 

  • Fallahkhair A.B., Li K.S., Murphy T.E.: Vector finite difference modesolver for anisotropic dielectric waveguides. J. Lightwave Technol. 26, 1423–1431 (2008). doi:10.1109/JLT.2008.923643

    Article  ADS  Google Scholar 

  • Gander M.J., McBride R., Jones J.D.C., Mogilevtsev D., Birks T.A., Knight J.C., Russell P.S.J.: Experimental measurement of group velocity in photonic crystal fiber. Electron. Lett. 35, 63–64 (1998). doi:10.1049/el:19990055

    Article  Google Scholar 

  • Hansen P., Broeng J., Libori E.B., Knudsen E., Bjarklev A., Jensen J.R., Simonsen H.: Highly birefringent index-guiding photonic crystal fibers. IEEE Photon. Technol. Lett. 13, 588–590 (2001). doi:10.1109/68.924030

    Article  ADS  Google Scholar 

  • Knight J.C., Birks T.A., Cregan R.F., Russell P.S.J., de Sandro J.P.: Large mode area photonic crystal fiber. Electron. Lett. 34, 1347–1348 (1998). doi:10.1049/el:19980965

    Article  Google Scholar 

  • Koshiba M., Saitoh K.: Polarization-dependent confinement losses in actual holey fibers. IEEE Photon. Technol. Lett. 15, 691–693 (2003). doi:10.1109/LPT.2003.809923

    Article  ADS  Google Scholar 

  • Lizier J.T., Town G.E.: Splice losses in holey optical fibers. IEEE Photon. Technol. Lett. 13, 794–796 (2001). doi:10.1109/68.935806

    Article  ADS  Google Scholar 

  • Lusse P., Stuwe P., Schöule J., Unger H.G.: Analysis of vectorial mode fields in optical waveguides by a new finite difference method. J. Lightwave Technol. 12, 487–494 (1994). doi:10.1109/50.285331

    Article  ADS  Google Scholar 

  • Marcuse Marcuse D.: Influence of curvature on the losses of doubly clad fibers. Appl. Opt. 21, 4208–4213 (1982)

    Article  ADS  Google Scholar 

  • Nakazawa M.: Highly efficient Raman amplification in a polarization preserving optical fiber. Appl. Phys. Lett. 46, 628–630 (1985). doi:10.1063/1.95508

    Article  ADS  Google Scholar 

  • Obayya S.S.A., Rahman B.M.A., Grattan K.T.V.: Accurate finite element modal solution of photonic crystal fibres. Optoelectronics, IEE Proc. 152, 241–246 (2005). doi:10.1049/ip-com:20045054

    Article  Google Scholar 

  • Obayya S.S.A., Rahman B.M.A., Grattan K.T.V., El-Mikati H.A.: Full vectorial finite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides. J. Lightwave Technol. 20, 1054–1060 (2001). doi:10.1109/JLT.2002.1018817

    Article  ADS  Google Scholar 

  • Russell P.S.J.: Photonic crystal fibers. Science 299, 358–362 (2003). doi:10.1126/science.1079280

    Article  ADS  Google Scholar 

  • Saitoh K., Koshiba M.: Empirical relations for simple design of photonic crystal fibers. Opt. Express 13, 267–274 (2005). doi:10.1364/OPEX.13.000267

    Article  ADS  Google Scholar 

  • Sood, V.K.: HVDC and FACTS Controllers: Applications of Static Converters in Power Systems (Power Electronics and Power Systems), Kluwer Academic, Boston (2004)

  • Steel M.J., Osgood R.M.: Polarization and Dispersive Properties of Elliptical-Hole Photonic Crystal Fibers. J. Lightwave Technol. 19, 495–503 (2001). doi:10.1109/50.920847

    Article  ADS  Google Scholar 

  • Suzuki K., Kubota H., Kawanishi S., Tanaka M., Fujita M.: Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Opt. Express 9, 676–680 (2001)

    ADS  Google Scholar 

  • Tsai K.H., Kim K.S., Morse T.F.: General solution for stress-induced polarization in optical fibers. J. Lightwave Technol. 9, 7–17 (1991). doi:10.1109/50.64917

    Article  ADS  Google Scholar 

  • White T., McPhedran R., Botten L., Smith G., de Sterke C.M.: Calculations of air-guided modes in photonic crystal fibers using the multipole method. Opt. Express 9, 721–732 (2001)

    Article  ADS  Google Scholar 

  • Yu C.P., Chang H.C.: Applications of the finite difference mode solution method to photonic crystal structures. Opt. Quantum Electron. 36, 145–163 (2004). doi:10.1023/B:OQEL.0000015636.20125.7e

    Article  Google Scholar 

  • Yue Y., Kai G.Y., Wang Z., Sun T.T., Jin L., Lu Y.F., Zhang C.S., Liu J.G., Li Y., Liu Y.G., Yuan S.Z.: Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core. IEEE Photon. Technol. Lett. 18, 2638–2640 (2006). doi:10.1109/LPT.2006.887330

    Article  ADS  Google Scholar 

  • Yue Y., Kai G., Wang Z., Sun T., Jin L., Lu Y., Zhang C., Liu J., Li Y., Liu Y., Yuan S., Dong X.: Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice. Opt. Lett. 32, 469–471 (2007). doi:10.1364/OL.32.000469

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. A. Obayya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hameed, M.F.O., Obayya, S.S.A., Al-Begain, K. et al. Accurate radial basis function based neural network approach for analysis of photonic crystal fibers. Opt Quant Electron 40, 891–905 (2008). https://doi.org/10.1007/s11082-009-9290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-009-9290-5

Keywords

Navigation