Skip to main content
Log in

Control of modulation and soliton polarization instabilities in photonic crystal fibers with birefringence management

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Photonic crystal fibers with composite linear birefringence, that is induced by both microstructure geometry and stress applying parts, permit the management of the wavelength dependence of both group and phase birefringence. In this work we investigate the novel nonlinear propagation phenomena that are enabled by birefringence management. Vector modulation instability is enhanced near the zero phase birefringence wavelength. Soliton polarization instability is controlled by Raman self-frequency shifting across the zero phase birefringence wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhmediev N. and Soto-Crespo J.M. (1994). Dynamics of solitonlike pulse propagation in birefringent optical fibers. Phys. Rev. E 49: 5742–5754

    Article  ADS  Google Scholar 

  • Barad Y. and Silberberg Y. (1997). Polarization evolution and polarization instability of solitons in a birefringent optical fiber. Phys. Rev. Lett. 78: 3290–3293

    Article  ADS  Google Scholar 

  • Blow K.J., Doran N.J. and Wood D. (1987). Polarization instabilities for solitons in birefringent fibers. Opt. Lett. 12: 202–204

    ADS  Google Scholar 

  • Blow K.J. and Wood D. (1989). Theoretical description of transient stimulated Raman scattering in optical fibres. IEEE J. Quantum Electron. 25: 2665–2673

    Article  ADS  Google Scholar 

  • Chen C.J., Menyuk C.R., Islam M.N. and Stolen R.H. (1991). Numerical study of the Raman effect and its impact on soliton-dragging logic gates. Opt. Lett. 16: 1647–1649

    ADS  Google Scholar 

  • Chen J.S., Wong G.K., Murdoch S.G., Kruhlak R.J., Leonhardt R., Harvey J.D., Joly N.Y. and Knight J.C. (2006). Cross-phase modulation instability in photonic crystal fibers. Opt. Lett. 31: 873–875

    Article  ADS  Google Scholar 

  • Chowdhury D. and Wilcox D. (2000). Comparison between optical fiber birefringence induced by stressanisotropy and geometric deformation. IEEE J. Selected Topics Quantum Electron. 6: 227–232

    Article  Google Scholar 

  • Crosignani B. and Di Porto P. (1985a). Intensity-induced rotation of the polarization ellipse in low-birefringence, single-mode optical fibres. Optica Acta 32: 1251–1258

    Google Scholar 

  • Crosignani B., Piazzolla S., Spano P. and Di Porto P. (1985b). Direct measurement of the nonlinear phase shift between the orthogonally polarized states of a single-mode fiber. Opt. Lett. 10: 88–91

    ADS  Google Scholar 

  • Cundiff S.T., Collings B.C. and Bergman K. (2000). Polarization locked vector solitons and axis instability in optical fiber. Chaos 10: 613–624

    Article  ADS  Google Scholar 

  • De Angelis C., Santagiustina M. and Wabnitz S. (1995). Stability of vector solitons in fiber laser and transmission systems. Optics Commun. 122: 23–27

    Article  ADS  Google Scholar 

  • Daino B., Gregori G. and Wabnitz S. (1985). Stability analysis of nonlinear coherent coupling. J. Appl. Phys. 58: 4512–4514

    Article  ADS  Google Scholar 

  • Daino B., Gregori G. and Wabnitz S. (1986). New all-optical devices based on third-order nonlinearity of birefringent fibers. Opt. Lett. 11: 42–44

    ADS  Google Scholar 

  • Folkenberg J.R., Nielsen M.D., Mortensen N.A., Jakobsen C. and Simonsen H.R. (2004). Polarization maintaining large mode area photonic crystal fiber. Opt. Express 12: 956–960

    Article  ADS  Google Scholar 

  • Ferrando A., Silvestre E., Andres P., Miret J. and Andres M. (2001). Designing the properties of dispersion-flattened photonic crystal fibers. Opt. Express 9: 687–697

    Article  ADS  Google Scholar 

  • Golovchenko E.A. and Pilipetskii A.N. (1994). Unified analysis of four-photon mixing, modulational instability and stimulated Raman scattering under various polarization conditions in fibers. J. Opt. Soc. Am. B 11: 92–101

    ADS  Google Scholar 

  • Gordon J.P. (1986). Theory of the soliton self-frequency shift. Opt. Lett. 11: 662–664

    ADS  Google Scholar 

  • Hansen T.P., Broeng J., Libori S.E.B., Knudsen E., Bjarklev A., Jensen J.R. and Simonsen H. (2001). Highly birefringent index guiding photonic crystal fibers. IEEE Photon. Technol. Lett. 13: 588–590

    Article  ADS  Google Scholar 

  • Ivanov A.A., Alfimov M.V., Zheltikov A.M., Szpulak M., Urbanczyk W. and Woicik J. (2006). Polarization-controlled vectorial spectral transformations of femtosecond pulses in a birefringent photonic-crystal fiber. J. Opt. Soc. Am. B 23: 986–991

    Article  ADS  Google Scholar 

  • Kruhlak R.J., Wong G.K., Chen J.S., Murdoch S.G., Leonhardt R., Harvey J.D., Joly N.Y. and Knight J.C. (2006). Polarization modulation instability in photonic crystal fibers. Opt. Lett. 31: 1379–1381

    Article  ADS  Google Scholar 

  • Luan F., Yulin A.V., Knight J.C. and Skryabin D.V. (2006). Polarization instability of solitons in photonic crystal fibers. Opt. Express 14: 6550–6556

    Article  ADS  Google Scholar 

  • Martynkien T., Gołojuch G., Szpulak, M., Urbanczyk, W.: In: Urbanczyk, W., Jaskorzynska, B., Russel, P.S.J. (eds.) Photonic Crystals and Fibers, Warsaw, Poland 28 August –2 September 2005, vol. 5950, pp. 59501V-1–59501V-7, SPIE Bellingh am, Washington (2005)

  • Menyuk C.R. (1987). Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes. Opt. Lett. 12: 614–616

    ADS  Google Scholar 

  • Millot G., Seve E. and Wabnitz S. (1997). Polarization symmetry breaking and pulse train generation from the modulation of light waves. Phys. Rev. Lett. 79: 661–664

    Article  ADS  Google Scholar 

  • Millot G., Seve E., Wabnitz S. and Haelterman M. (1998a). Dark-soliton-likepulse-train generation from induced modulational polarizationinstability in a birefringent fiber. Opt. Lett. 23: 511–513

    ADS  Google Scholar 

  • Millot G., Seve E., Wabnitz S. and Haelterman M. (1998b). Observation of induced modulational polarization instabilities and pulse-train generation in the normal-dispersion regime of a birefringent optical fiber. J. Opt. Soc. Am. B 15: 1266–1277

    Article  ADS  Google Scholar 

  • Mogilevtsev D., Broeng J., Barkou S.E. and Bjarklev A. (2001). Design of polarization-preserving photonic crystal fibres with elliptical pores. J. Opt. A: Pure Appl. Opt. 3: 141–143

    Article  ADS  Google Scholar 

  • Murdoch S.G., Leonhardt R. and Harvey J.D. (1995). Polarization modulation instability in weakly birefringent fibers. Opt. Lett. 20: 866–868

    ADS  Google Scholar 

  • Murdoch S.G., Leonhardt R. and Harvey J.D. (1997). Nonlinear dynamics of polarization modulation instability in optical fiber. J. Opt. Soc. Am. B 14: 3403–3411

    ADS  Google Scholar 

  • Nguyen A.T., Phan Huy K., Brainis E., Mergo P., Wojcik J., Nasilowski T., Van Erps J., Thienpont H. and Massar S. (2006). Enhanced cross phase modulation instability in birefringent photonic crystal fibers in the anomalous dispersion regime. Opt. Express 14: 8290–8297

    Article  ADS  Google Scholar 

  • Ortigosa-Blanch A., Knight J.C., Wadsworth W.J., Arriaga J., Mangan B.J., Birks T.A. and Russell P.S.J. (2000). Highly birefringent photonic crystal fibers. Opt. Lett. 25: 1325–1327

    ADS  Google Scholar 

  • Ortigosa-Blanch A., Diez A., Delgado-Pinar M., Cruz J.L. and Andrés M.V. (2004). Ultrahigh birefringent nonlinear microstructured fiber. IEEE Photon. Technol. Lett. 16: 1667–1669

    Article  ADS  Google Scholar 

  • Presby H.M. and Kaminow I.P. (1976). Binary silica optical fibers: refractive index and profile dispersion measurements. Appl. Opt. 15: 3029–3036

    ADS  Google Scholar 

  • Ritari T., Ludvigsen H., Wegmuller M., Legré M., Gisin N., Folkenberg J. and Nielsen M. (2004). Experimental study of polarization properties of highly birefringent photonic crystal fibers. Opt. Express 12: 5931–5939

    Article  ADS  Google Scholar 

  • Rothenberg J.E. (1990). Modulational instability for normal dispersion. Phys. Rev. A 42: 682–685

    Article  ADS  Google Scholar 

  • Sala K. (1984). Nonlinear refractive-index phenomena in isotropic media subjected to a dc electric field: Exact solutions. Phys. Rev. A 29: 1944–1956

    Article  ADS  Google Scholar 

  • Schreiber T., Schultz H., Schmidt O., Röser F., Limpert J. and Tünnermann A. (2005a). Stress-induced birefringence in large-mode-area micro-structured optical fibers. Opt. Express 13: 3637–3646

    Article  ADS  Google Scholar 

  • Schreiber T., Röser F., Schmidt O., Limpert J., Iliew R., Lederer F., Petersson A., Jacobsen C., Hansen K.P., Broeng J. and Tünnermann A. (2005). Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity. Opt. Express 13: 7621–7630

    Article  ADS  Google Scholar 

  • Steel M.J. and Osgood R.M. (2001). Elliptical-hole photonic crystal fibers. Opt. Lett. 26: 229–231

    ADS  Google Scholar 

  • Sugawa T., Kurokawa K., Kubota H. and Nakazawa M. (1994). Soliton self-frequency shift in orthogonally polarised femtosecond solitons. Electron. Lett. 30: 1963–1965

    Article  Google Scholar 

  • Suzuki K., Kubota H., Kawanishi S., Tanaka M. and Fujita M. (2001). Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Opt. Express 9: 676–680

    Article  ADS  Google Scholar 

  • Szpulak M., Statkiewicz G., Olszewski J., Martynkien T., Urbanczyk W., Wojcik J., Makara M., Klimek J., Nasilowski T., Berghmans F. and Thienpont H. (2005). Experimental and theoretical investigations of birefringent holey fibers with a triple defect. Appl. Opt. 44: 2652–2658

    Article  ADS  Google Scholar 

  • Tonello A., Wabnitz S., Pitois S., Millot G., Martynkien T., Urbanczyk W., Wojcik J., Locatelli A., Conforti M. and De Angelis C. (2006a). Frequency tunable polarization and intermodal modulation instability in high birefringence holey fiber. Opt. Express 14: 397

    Article  ADS  Google Scholar 

  • Tonello A. and Wabnitz S. (2006b). Switching off polarization modulational instabilities in photonic crystal fibers. IEEE Photonics Technol. Lett. 18: 886–888

    Article  ADS  Google Scholar 

  • Tonello A., Wabnitz S., Martynkien T., Golojuch G., Urbanczyk W.: Managing group and phase birefringenece for nonlinear optics in photonic crystal fibres, ECOC 2006, Cannes 24–28 September 2006, paper We3.P.202 (2006c)

  • Trillo S., Wabnitz S., Stolen R.H., Assanto G., Seaton C.T. and Stegeman G.I. (1986). Experimental observation of polarization instability in a birefringent optical fiber. Appl. Phys. Lett. 49: 1224–1226

    Article  ADS  Google Scholar 

  • Trillo S., Wabnitz S., Wright E.M. and Stegeman G.I. (1988). Soliton switching in fiber nonlinear directional couplers. Opt. Lett. 13: 672–674

    ADS  Google Scholar 

  • Trillo S., Wabnitz S., Wright E.M. and Stegeman G.I. (1989a). Polarized soliton instability and branching in birefringent fibers. Opt. Commun. 70: 166–172

    Article  ADS  Google Scholar 

  • Trillo S. and Wabnitz S. (1989b). Ultrashort pulse train generation through induced modulational polarization instability in a birefringent Kerr-like medium. J. Opt. Soc. Am. B 6: 238–249

    Article  ADS  Google Scholar 

  • Trillo S. and Wabnitz S. (1992). Parametric and Raman amplification in birefringent fibers. J. Opt. Soc. Am. B 9: 1061–1082

    ADS  Google Scholar 

  • Trillo S. and Wabnitz S. (1997). Bloch wave theory of modulational polarization instabilities in birefringent optical fibers. Phys. Rev. E 56: 1048–1058

    Article  ADS  Google Scholar 

  • Wabnitz S. (1988). Modulational polarization instability of light in a nonlinear birefringent dispersive medium. Phys. Rev. A 38: 2018–2021

    Article  ADS  Google Scholar 

  • Wabnitz S., Wright E.M. and Stegeman G.I. (1989). Solitary-wave decay and symmetry-breaking instabilities in two-mode fibers. Phys. Rev. A 40: 4455–4466

    Article  ADS  Google Scholar 

  • Wabnitz S., Wright E.M. and Stegeman G.I. (1990). Polarization instabilities of dark and bright coupled solitary waves in birefringent optical fibers. Phys. Rev. A 41: 6415–6424

    Article  ADS  Google Scholar 

  • Wabnitz S., Trillo S., Wright E.M. and Stegeman G.I. (1991). Wavelength-dependent soliton self-routing in birefringent fiber filters. J. Opt. Soc. Am. B 8: 602–613

    ADS  Google Scholar 

  • Wabnitz S. and De Angelis C. (1996). Raman-assisted femtosecond soliton switching and wavelength demultiplexing with optical fiber rocking filters. IEEE Photon. Technol. Lett. 8: 635–637

    Article  ADS  Google Scholar 

  • Winful H.G. (1986). Polarization instabilities in birefringent nonlinear media: application to fiberoptic devices. Opt. Lett. 11: 33–35

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wabnitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonello, A., Wabnitz, S., Martynkien, T. et al. Control of modulation and soliton polarization instabilities in photonic crystal fibers with birefringence management. Opt Quant Electron 39, 435–453 (2007). https://doi.org/10.1007/s11082-007-9103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-007-9103-7

Keywords

Navigation