Skip to main content
Log in

Non compact single-layers of dielectric spheres electromagnetc behaviour

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Single layer of dielectric spheres is a recognized model for the basic understanding of some aspects of photonic crystals. Here we present a systematic study of the effect of compacting in the electromagnetic transmission of dielectric spheres monolayers. Experiments were performed in the microwave domain (from 10 GHz to 30 GHz) with glass spheres of high dielectric permittivity ε = 7. Time Domain Finite Integration (TDFI) calculations were also accomplished. Experimental data and TDFI calculations agreement provides a double check on the lack of experimental artefacts and the correctness of simulation settings. Following the evolution of the lower frequency spectral peak with layer compacting ratio, we established three different electromagnetic regimes. For the higher and lower compacting ratio regimes, the peak frequency matches isolated sphere pure resonances, while for intermediate values of compacting, some transition between these two modes takes place. Extending the study to the complete frequency range, we find that sphere single layers transmission spectra become closer to isolated sphere scattering calculations as the compacting ratio is decreased. However as the agreement remains imperfect even for our lowest compacting measurable layer, we conclude that some structure contribution cannot be neglected even for low compact layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bohren, C.F., Huffman, D.R. (eds.): Absortion and Scattering of Light by Small Particles. Wiley-Interscience (1983)

  • Joannopoulos J.D., Villeneuve P.R. and Fan S. (1997). Photonic crystals: Putting a new twist on light. Nature 386: 143–149

    Article  ADS  Google Scholar 

  • Joannopoulos J.D., Meade R.D. and Winn J. (1995). Photonic Crystals, Modelling the Flow of the Light. Princeton Univ. Press, Princeton, NJ

    Google Scholar 

  • John S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett 58: 2486–2489

    Article  ADS  Google Scholar 

  • Kondo T. (2002). Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy. Phys. Rev. B 66: 331111–331114

    Article  MathSciNet  Google Scholar 

  • Kondo T. (2004). Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres. Phys. Rev. B. 70: 235113–235119

    Article  ADS  Google Scholar 

  • Kosaka H. (1998). Superprism phenomena in photonic crystals. Phys.Rev. B 58: 10096–10099

    Article  ADS  MathSciNet  Google Scholar 

  • Kurokawa Y. (2004a). Optical band structure and near-field intensity of a periodically arrayed monolayer of dielectric spheres on dielectric substrate of finite thickness. Phys. Rev. B 69: 155177–155126

    Article  Google Scholar 

  • Kurokawa Y. (2004b). Internal electric-field intensity distribution of a monolayer of periodically arrayed dielectric spheres. Phys. Rev. B 70: 253113–253119

    Article  Google Scholar 

  • López C. (2003). Materials aspects of photonic crystals. Adv. Mater. 15(20): 1679–1704

    Article  Google Scholar 

  • Luo C. (2002). All-angle negative refraction without negative effective index. Phys. Rev. B 65: 2011041–2011044

    Google Scholar 

  • Miyazaki H. and Ohtaka K. (1998). Near-field images of a monolayer of periodically arrayed dielectric spheres. Phys. Rev. B 58: 6920–6937

    Article  ADS  Google Scholar 

  • Miyazaki H.T. (2000). Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope. J. Appl. Phys. 87: 7152–7158

    Article  ADS  Google Scholar 

  • Ohtaka K. and Inoue M. (1982). Light scattering from macroscopic spherical bodies. I. Integrated density of states of transverse electromagnetic fields. Phys. Rev. B 25: 677–688

    Article  ADS  Google Scholar 

  • Ohtaka K. and Tanabe Y. (1996a). Photonic band using vector spherical waves. I. Various properties of bloch electric fields and heavy photons. J. Phys. Soc. Jpn. 65: 2265–2275

    Article  ADS  Google Scholar 

  • Ohtaka K. and Tanabe Y. (1996b). Photonic bands using vector spherical waves. II. Reflectivity, coherence and local field. J. Phys. Soc. Jpn. 65: 2276–2284

    Article  ADS  Google Scholar 

  • Ohtaka K. and Tanabe Y. (1996c). Photonic bands using vector spherical waves. III. Group-theoretical treatment. J. Phys. Soc. Jpn. 65: 2670–2684

    Article  ADS  Google Scholar 

  • Ohtaka K. (2000). Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region. Phys. Rev. B 61: 5267–5279

    Article  ADS  Google Scholar 

  • Ohtaka K. (1980). Scattering theory of low-energy photon diffraction. J. Phys. C 13: 667–680

    Article  ADS  Google Scholar 

  • Ohtaka K. (1979). Energy band of photons and low-energy photon diffraction. Phys. Rev. B 19: 5057–5067

    Article  ADS  Google Scholar 

  • Pendry J.B. (1971). New perturbation theory for low-energy electron-diffraction intensities. Phys. Rev. Lett. 27: 856–859

    Article  ADS  Google Scholar 

  • Pendry J.B. (2000). Negative refraction makes a perfect lens. Phys. Rev. Lett. 85: 3966–3969

    Article  ADS  Google Scholar 

  • Sakoda K.J. (1997). Numerical analysis of the interference patterns in the optical transmission spectra of a square photonic lattice. Opt. Soc. Am. B 14(8): 1961–1966

    Article  ADS  Google Scholar 

  • Yablonovitch E. (1987). Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58: 2059–2062

    Article  ADS  Google Scholar 

  • Yano S. (2002). Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres. Phys. Rev. B 66: 75119–751197

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sevilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andueza, A., Sevilla, J. Non compact single-layers of dielectric spheres electromagnetc behaviour. Opt Quant Electron 39, 311–320 (2007). https://doi.org/10.1007/s11082-007-9091-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-007-9091-7

Keywords

Navigation