Skip to main content
Log in

Light diffraction features in an ordered monolayer of spheres

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure and optical diffraction properties of monolayers of monodisperse spheres crystallized on transparent dielectric substrates are studied. Two types of diffraction phenomena are considered: surface light diffraction on the lattice of spheres and waveguide resonances in the monolayer plane. For experimental study of these phenomena, optical retroreflection and transmission spectra are measured as functions of the light incidence angle and azimuthal orientation of the incidence plane. The monolayer structures determined by scanning electron microscopy and light diffraction methods are in quantitative agreement. It is concluded that one-dimensional Fraunhofer diffraction is applicable to describe surface diffraction in the hexagonal lattice of spheres. In the case of oblique light incidence, anisotropy of diffraction and transmission spectra depending on the light incidence plane orientation with respect to the sphere lattice and linear polarization of incident light is detected. Waveguide resonances of the planar two-dimensional photonic crystal are approximated within the light diffraction model in the “empty” hexagonal lattice. The best approximation of the waveguide resonance dispersion is achieved using the effective refractive index, depending on the wavelength. Surface diffraction suppression by waveguide resonances of the photonic crystal is demonstrated. Surface diffraction orders are identified as diffraction at singular points of the Brillouin zone of the planar twodimensional photonic crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Inoue, Phys. Rev. B 36, 2852 (1987).

    Article  ADS  Google Scholar 

  2. K. Ohtaka, H. Miyazaki, and T. Ueta, Mater. Sci. Eng. B 48, 153 (1997).

    Article  Google Scholar 

  3. Y. Kurokawa, H. Miyazaki, and Y. Jimba, Phys. Rev. B 69, 155117 (2004).

    Article  ADS  Google Scholar 

  4. X. Ye and L. Qi, Nano Today 6, 608 (2011).

    Article  Google Scholar 

  5. H. Zheng and S. Ravaine, Crystals 6, 54 (2016).

    Article  Google Scholar 

  6. S. G. Romanov, S. Orlov, D. Ploss, C. K. Weiss, N. Vogel, and U. Peschel, Sci. Rep. 6, 27264 (2016).

    Article  ADS  Google Scholar 

  7. N. Vogel, S. Goerres, K. Landfester, and C. K. Weiss, Macromol. Chem. Phys. 212, 1719 (2011).

    Article  Google Scholar 

  8. N. Vogel, L. de Viguerie, U. Jonas, C. K. Weiss, and K. Landfester, Adv. Funct. Mater. 21, 3064 (2011).

    Article  Google Scholar 

  9. N. Vogel, M. Retsch, C. A. Fustin, A. del Campo, and U. Jonas, Chem. Rev. 115, 6265 (2015).

    Article  Google Scholar 

  10. S. G. Romanov, A. Regensburger, A. V. Korovin, and U. Peschel, Adv. Mater. 23, 2515 (2011).

    Article  Google Scholar 

  11. L. Shi, X. Liu, H. Yina, and J. Zi, Phys. Lett. A 374, 1059 (2010).

    Article  ADS  Google Scholar 

  12. X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, Adv. Funct. Mater. 20, 1910 (2010).

    Article  Google Scholar 

  13. S. G. Romanov, S. Orlov, A. V. Korovin, G. P. Chuiko, A. Regensburger, A. S. Romanova, A. Kriesch, and U. Peschel, Phys. Rev. B 86, 195145 (2012).

    Article  ADS  Google Scholar 

  14. P. Zhan, Z. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. Zhu, N. Ming, and J. Zi, Adv. Mater. 18, 1612 (2006).

    Article  Google Scholar 

  15. L. Landstrom, D. Brodoceanu, D. Bauerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, Opt. Express 17, 761 (2009).

    Article  ADS  Google Scholar 

  16. R. M. Cole, Y. Sugawara, J. J. Baumberg, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, Phys. Rev. Lett. 97, 137401 (2006).

    Article  ADS  Google Scholar 

  17. Y. Lan, S. Wang, X. Yin, Y. Liang, H. Dong, N. Gao, J. Li, H. Wang, and G. Li, Nanoscale 8, 13454 (2016).

    Article  ADS  Google Scholar 

  18. I. Zharov and A. Khabibullin, Acc. Chem. Res. 47, 440 (2014).

    Article  Google Scholar 

  19. S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112 (2002).

    Article  ADS  Google Scholar 

  20. A. David, H. Benisty, and C. Weisbuch, Rep. Prog. Phys. 75, 12650 (2012).

    Article  Google Scholar 

  21. S. G. Romanov, Phys. Solid State 49, 536 (2007).

    Article  ADS  Google Scholar 

  22. J. Küchenmeister, C. Wolff, K. Busch, U. Peschel, and S. G. Romanov, Adv. Opt. Mater. 1, 952 (2013).

    Article  Google Scholar 

  23. B. van Duffel, R. H. A. Ras, F. C. de Schryver, and R. A. Schoonheydt, J. Mater. Chem. 11, 3333 (2001).

  24. S. G. Romanov, M. Bardosova, I. Povey, M. Pemble, and C. M. Sotomayor Torres, Appl. Phys. Lett. 92, 191106 (2008).

  25. S. G. Romanov, Proc. SPIE 9885, 98850V (2016).

    Article  ADS  Google Scholar 

  26. M. Bardosova, M. E. Pemble, I. M. Povey, and R. H. Tredgold, Adv. Mater. 22, 3104 (2010).

    Article  Google Scholar 

  27. G. S. Landsberg, Optics, 6th ed. (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  28. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, Princeton, 2008).

    MATH  Google Scholar 

  29. M. López-García, J. F. Galisteo-López, C. López, and A. García-Martín, Phys. Rev. B 85, 235145 (2012).

    Article  ADS  Google Scholar 

  30. N. Sultanova, S. Kasarova, and I. Nikolov, Acta Phys. Polon. A 116, 585 (2009).

    Article  ADS  Google Scholar 

  31. L. Rayleigh, Proc. R. Soc. A 79, 399 (1907).

    Article  ADS  Google Scholar 

  32. V. A. Kosobukin, Phys. Solid State 47, 2035 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Romanov.

Additional information

Original Russian Text © S.G. Romanov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 7, pp. 1329–1340.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, S.G. Light diffraction features in an ordered monolayer of spheres. Phys. Solid State 59, 1356–1367 (2017). https://doi.org/10.1134/S1063783417070216

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417070216

Navigation