Skip to main content
Log in

A Low-loss Electro-optic Waveguide Polymer Modulator and its Optimization Design

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Generally, the core is made up of EO materials in electro-optic waveguide polymer modulators and thus lightwave carrier is modulated in the core. In this case, the loss from chromophores is often large because the most of light power are confined to cores. In order to reduce the optical loss, we presented an approach that the lightwave was modulated only in claddings; that is to say, the EO polymer is only used in claddings and the core material is low-loss passive. Results indicate the propagation loss of this kind of modulator is about 1/3 of the former. Although the modal overlap integral between the microwave and the lightwave weakened under this condition, it could be improved by optimizing the dimension of waveguide. Due to the lower propagation loss, the interaction length of the modulator may be lengthened. Thus, the half-wave voltage can be decreased further. Also, some considerations on optimization design of this modulator are discussed. Especially, the effect of conductor loss and velocity mismatching should be taken into account in order to achieve the theoretical optimal half-wave voltage and the device bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ridder Particlede M. Rene A. Driessen E. Rikkers Paul V. Lambeck Mart B.J. Diemeer (1999) Opt. Mater 12 205 Occurrence Handle10.1016/S0925-3467(99)00048-8

    Article  Google Scholar 

  • Datong Chen Harold R. Fetterman (1997) Appl. Phys. Lett 70 3335 Occurrence Handle10.1063/1.119162

    Article  Google Scholar 

  • William H. Steier et al. (1997) Chem. Phys 245 487 Occurrence Handle10.1016/S0301-0104(99)00042-7

    Article  Google Scholar 

  • M.H. Lee H.J. Lee S.G. Han H.Y. Kim K.H. Kim Y.H. Won S.Y. Kang (1997) Thin Solid Films 303 287 Occurrence Handle10.1016/S0040-6090(97)00016-3

    Article  Google Scholar 

  • Mark Lee Howard E. Katz Christoph Erben et al. (2002) Science 298 140

    Google Scholar 

  • K.D. Singer M.G. Kuzyk W.R. Holland J.E. Sohn S.J. Lalama R.B. Comizzoli H.E. Katz M.L. Schilling (1988) Appl. Phys. Lett 53 1800 Occurrence Handle10.1063/1.99785

    Article  Google Scholar 

  • M. Amano T. Kaino (1990) J. Appl. Phys 68 6024 Occurrence Handle10.1063/1.346935

    Article  Google Scholar 

  • L.R. Dalton (2001) Synthetic Metals 124 3 Occurrence Handle10.1016/S0379-6779(01)00410-6

    Article  Google Scholar 

  • B.H. Robinson L.R. Dalton A.W. Harper A. Ren F. Wang C. Zhang G. Todorova M. Lee R. Aniszfeld S. Garner A. Chen W.H. Steier S. Houbrecht A. Persoons I. Ledoux J. Zyss A.K.Y. Jen (1999) Chem. Phy 245 35 Occurrence Handle10.1016/S0301-0104(99)00079-8

    Article  Google Scholar 

  • Y. Shi C. Zhang H. Zhang J.H. Bechtel L.R. Dalton B.H. Robinson W.H. Steier (2000) Science 288 119 Occurrence Handle10.1126/science.288.5463.119 Occurrence Handle10753112 Occurrence HandleMR1980484

    Article  PubMed  MathSciNet  Google Scholar 

  • S.M. Garner S-S. Lee V. Chuyanov A. Chen et al. (1999) IEEE J. QE 35 1146 Occurrence Handle10.1109/3.777214

    Article  Google Scholar 

  • S-S. Lee S.M. Garner V. Chuyanov et al. (2000) IEEE J. QE 36 527 Occurrence Handle10.1109/3.842093

    Article  Google Scholar 

  • Yoshimura R.M. Hikita S. Tomaru S. Imamura (1998) IEEE. Lightwave Techno 16 1030 Occurrence Handle10.1109/50.681460

    Article  Google Scholar 

  • Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.

  • Nishihara, H.M., Haruna and T. Suhara. Optical Integrated Circuits. Ohmsha Ltd., 1985.

  • Wheeler, H.A. IEEE Trans. MTT-12 280 H.A. Wheeler, IEEE Trans. MTT-13 172, 1965.

  • D. Marcuse (1974) Theory of Dielectric Optical Waveguides Academic Press N.Y.

    Google Scholar 

  • O. Mitrofanov Mark Lee H.E. Katz C. Erben (2002) Appl. Phys. Lett 81 1474 Occurrence Handle10.1063/1.1503871

    Article  Google Scholar 

  • H.A. Wheeler (1942) Proc. IRE 30 412

    Google Scholar 

  • Pucel, R.A. D.J. Masse and C.P. Hartwig. IEEE Trans. MTT-16 342, 1968. Also see correction in IEEE Trans. MTT-16 1064, 1968.

  • Gupta, K.C., R. Garg and R. Chadha. Computer-Aided Design of Microwave circuits. Artech House, 1981.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Zhu, D. A Low-loss Electro-optic Waveguide Polymer Modulator and its Optimization Design. Opt Quant Electron 37, 949–963 (2005). https://doi.org/10.1007/s11082-005-8026-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-005-8026-4

Keywords

Navigation