Skip to main content
Log in

Bandwidth improvement of microwave photonic components based on electro-optic polymers loaded with TiO2 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electro-optic (EO) polymers offer a very attractive possibility of realizing low-cost microwave photonic components with a wide bandwidth and a low driving voltage, thanks to a low dispersion from microwave to optical frequency of polymeric materials on the one hand, and the progress in the synthesis of high hyperpolarizability chromophores on the other hand. This paper studies the influence of titanium dioxide (TiO2) nanoparticle loading on the microwave and optical properties of EO polymers. Thus, poly(methyl methacrylate) (PMMA) and disperse red 1 (DR1) are used as host polymer and guest EO chromophore, respectively. With 1–3% TiO2 nanoparticle homogeneously incorporated in the polymer, the dielectric constant varies from 2.73 to 3.40 over the 400 MHz–10 GHz range, and the refractive index increases from 1.483 to 1.488 at the wavelength of 1539.6 nm. It is shown that fine tuning of dielectric constant and refractive index could allow improvement of the microwave photonic component bandwidth. For example, with an EO interaction length L = 2 cm (typical length of EO modulators), the ultimate modulator bandwidth could be raised to 258 GHz by loading PMMA–DR1 EO polymer with 1% wt of TiO2 nanoparticles. It is also found that loading polymer with nanoparticles could improve the EO response of poled polymers, represented by the intensity of the second-harmonic-generation (SHG) signal. The latter presents more than a threefold increase by loading PMMA–DR1 EO polymer with 2% wt TiO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. L. Arizmendi, Phys. Status Solidi A 201, 253–283 (2004)

    Article  ADS  Google Scholar 

  2. W.K. Burns, M.M. Howerton, R.P. Moeller, R. Krahenbuhl, R.W. McElhanon, A.S. Greenblatt, J. Light. Technol. 17, 2551–2555 (1999)

    Article  ADS  Google Scholar 

  3. S. Huang, T.-D. Kim, J. Luo, S.K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, A.K.-Y. Jen, Appl. Phys. Lett. 96, 243311–243313 (2010)

    Article  ADS  Google Scholar 

  4. D.M.Y. Enami, Appl. Phys. Lett. 91, 093505 (2007)

    Article  ADS  Google Scholar 

  5. M. Hadjloum, M. El Gibari, H.W. Li, A.S. Daryoush, Opt. Commun. 373, 82–90 (2016)

    Article  ADS  Google Scholar 

  6. B.M.A. Rahman, V. Haxha, S. Haxha, K.T.V. Grattan, J. Light. Technol. 24, 3506–3513 (2006)

    Article  Google Scholar 

  7. S. Gross, D. Camozzo, V. Di Noto, L. Armelao, E. Tondello, Eur. Polym. J. 43, 673–696 (2007)

    Article  Google Scholar 

  8. R.R. Prakash, S. Pandiarajan, P. Venkatesh, N. Kamaraj, in Emerging Trends in Electrical and Computer Technology, 2011 International Conference on, 46–49 (2011)

  9. M.G. Kuzyk, C.W. Dirk, J.E. Sohn, JOSA B 7, 842–858 (1990)

    Article  ADS  Google Scholar 

  10. B. Derkowska-Zielinska, O. Krupka, A. Wachowiak, V. Smokal, A. Grabowski, in Transparent Optical Networks, 2015 17th International Conference on, 1–3 (2015)

  11. T. Pliska, W.-R. Cho, A.-C. Le Duff, V. Ricci, A. Otomo, M. Canva, P. Raimond, F. Kajzar, J. Opt. Soc. Am. B 17, 1554–1564 (2000)

    Article  ADS  Google Scholar 

  12. A.H. Yuwono, J. Xue, J. Wang, H.I. Elim, W. Ji, Y. Li, T.J. White, J. Mater. Chem. 13, 1475–1479 (2003)

    Article  Google Scholar 

  13. C.C. Evans, C. Liu, J. Suntivich, Opt. Express 23, 11160–11169 (2015)

    Article  ADS  Google Scholar 

  14. Z. Ma, Andrew J. Becker, P. Polakos, H. Huggins, J. Pastalan, H. Wu, K. Watts, Y.H. Wong, P. Mankiewic, Electr. Dev. IEEE Trans. 45, 1811–1816 (1998)

    Article  ADS  Google Scholar 

  15. T. Schneider, PhD Thesis, Université de Nantes, France, 2006

  16. D.M. Pozar, Microwave engineering, 4th edn. (Wiley, Hoboken, 2012)

    Google Scholar 

  17. K. R. Philippe-Auguste, PhD Thesis, Université de Nantes, France, 2012

  18. J.G. Grote, J. Phys. Chem. B 108, 8584–8591 (2004)

    Article  Google Scholar 

  19. L. Liu, Z.H. Yang, L.B. Kong, W.Y. Yin, S. Wang, Appl. Phys. A 108, 843–848 (2012)

    Article  ADS  Google Scholar 

  20. G. Wan, L. Yu, X. Peng, G. Wang, X. Huang, H. Zhao, Y. Qin, RSC Adv 5, 77443–77448 (2015)

    Article  Google Scholar 

  21. K. Karkkainen, A. Sihvola, K. Nikoskinen, I.E.E.E. Trans, Geosci. Remote Sens. 39, 1013–1018 (2001)

    Article  ADS  Google Scholar 

  22. A.V. Goncharenko, V.Z. Lozovski, E.F. Venger, Opt. Commun. 174, 19–32 (2000)

    Article  ADS  Google Scholar 

  23. B.M. Suleiman, Appl. Phys. A 99, 223–228 (2010)

    Article  ADS  Google Scholar 

  24. M. Yoshida, M. Lal, N.D. Kumar, P.N. Prasad, J. Mater. Sci. 32, 4047–4051 (1997)

    Article  ADS  Google Scholar 

  25. B. Guiffard, D. Guyomar, L. Seveyrat, Y. Chowanek, M. Bechelany, D. Comu, P. Miele, J. Phys. D Appl. Phys. 42, 055503 (2009)

    Article  ADS  Google Scholar 

  26. B. Guiffard, L. Seveyrat, G. Sebald, D. Guyomar, J. Phys. D Appl. Phys. 39, 3053–3057 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Anthony Rousseau who is with Institut des Molécules et Matériaux du Mans (IMMM) for the TEM image. The financial support of region Pays de la Loire under the Project ADC PolyNano is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Palessonga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palessonga, D., El Gibari, M., Ginestar, S. et al. Bandwidth improvement of microwave photonic components based on electro-optic polymers loaded with TiO2 nanoparticles. Appl. Phys. A 123, 542 (2017). https://doi.org/10.1007/s00339-017-1154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1154-4

Navigation