Skip to main content
Log in

Mixed-integer exponential conic optimization for reliability enhancement of power distribution systems

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

This paper develops an optimization model for determining the placement of switches, tie lines, and underground cables in order to enhance the reliability of an electric power distribution system. A central novelty in the model is the inclusion of nodal reliability constraints, which consider network topology and are important in practice. The model can be reformulated either as a mixed-integer exponential conic optimization problem or as a mixed-integer linear program. We demonstrate both theoretically and empirically that the judicious application of partial linearization is key to rendering a practically tractable formulation. Computational studies indicate that realistic instances can indeed be solved in a reasonable amount of time on standard hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abiri-Jahromi A, Fotuhi-Firuzabad M, Parvania M, Mosleh M (2011) Optimized sectionalizing switch placement strategy in distribution systems. IEEE Trans Power Delivery 27(1):362–370

    Article  Google Scholar 

  • Ahmadi H, Martí JR (2015) Minimum-loss network reconfiguration: a minimum spanning tree problem. Sustain Energy Grids Netw 1:1–9

    Article  Google Scholar 

  • Annamalai C (2022) Computing method for combinatorial geometric series and binomial expansion. Available at SSRN 4168016

  • ApS M (2020) Mosek modeling cookbook

  • Barker PP, De Mello RW (2000) Determining the impact of distributed generation on power systems. I. Radial distribution systems. In: 2000 Power Engineering Society Summer Meeting (Cat. No. 00CH37134) vol. 3, pp 1645–1656. IEEE

  • Bezerra JR, Barroso GC, Leão RPS, Sampaio RF (2014) Multiobjective optimization algorithm for switch placement in radial power distribution networks. IEEE Trans Power Delivery 30(2):545–552

    Article  Google Scholar 

  • Billinton R, Billinton J (1989) Distribution system reliability indices. IEEE Trans Power Delivery 4(1):561–568

    Article  Google Scholar 

  • Billinton R, Jonnavithula S (1996) Optimal switching device placement in radial distribution systems. IEEE Trans Power Delivery 11(3):1646–1651

    Article  Google Scholar 

  • Boyd S, Kim S-J, Vandenberghe L, Hassibi A (2007) A tutorial on geometric programming. Optim Eng 8:67–127

    Article  MathSciNet  Google Scholar 

  • Chen C-S, Lin C-H, Chuang H-J, Li C-S, Huang M-Y, Huang C-W (2006) Optimal placement of line switches for distribution automation systems using immune algorithm. IEEE Trans Power Syst 21(3):1209–1217

    Article  Google Scholar 

  • Dahl J, Andersen ED (2022) A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization. Math Program 194(1):341–370

    Article  MathSciNet  Google Scholar 

  • Dezaki HH, Hosseinian SH, Abyaneh HA, Agah SMM (2013) Optimized operation and maintenance costs to improve system reliability by decreasing the failure rate of distribution lines. Turkish J Electr Eng Comput Sci 21(Sup. 2):2191–2204

    Article  Google Scholar 

  • Dolatabadi SH, Ghorbanian M, Siano P, Hatziargyriou ND (2020) An enhanced IEEE 33 bus benchmark test system for distribution system studies. IEEE Trans Power Syst 36(3):2565–2572

    Article  Google Scholar 

  • Ecker JG (1980) Geometric programming: methods, computations and applications. SIAM Rev 22(3):338–362

    Article  MathSciNet  Google Scholar 

  • Falaghi H, Haghifam M-R, Singh C (2008) Ant colony optimization-based method for placement of sectionalizing switches in distribution networks using a fuzzy multiobjective approach. IEEE Trans Power Delivery 24(1):268–276

    Article  Google Scholar 

  • Farajollahi M, Fotuhi-Firuzabad M, Safdarian A (2017) Optimal placement of sectionalizing switch considering switch malfunction probability. IEEE Trans Smart Grid 10(1):403–413

    Article  Google Scholar 

  • Farajollahi M, Fotuhi-Firuzabad M, Safdarian A (2018) Sectionalizing switch placement in distribution networks considering switch failure. IEEE Trans Smart Grid 10(1):1080–1082

    Article  Google Scholar 

  • Farajollahi M, Fotuhi-Firuzabad M, Safdarian A (2018) Simultaneous placement of fault indicator and sectionalizing switch in distribution networks. IEEE Trans Smart Grid 10(2):2278–2287

    Article  Google Scholar 

  • Federowicz A, Mazumdar M (1968) Use of geometric programming to maximize reliability achieved by redundancy. Oper Res 16(5):948–954

    Article  Google Scholar 

  • Friberg HA (2021) Projection onto the exponential cone: a univariate root-finding problem. Optimization Online

  • Fumagalli E, Schiavo L, Delestre F (2007) Service quality regulation in electricity distribution and retail. Springer, Berlin

    Book  Google Scholar 

  • Georgilakis PS, Arsoniadis C, Apostolopoulos CA, Nikolaidis VC (2021) Optimal allocation of protection and control devices in smart distribution systems: models, methods, and future research. IET Smart Grid

  • Guo S, Lin J, Zhao Y, Wang L, Wang G, Liu G (2020) A reliability-based network reconfiguration model in distribution system with DGs and ESSs using mixed-integer programming. Energies 13(5):1219

    Article  Google Scholar 

  • Haakana J, Kaipia T, Lassila J, Partanen J (2013) Reserve power arrangements in rural area underground cable networks. IEEE Trans Power Delivery 29(2):589–597

    Article  Google Scholar 

  • Hashemi H, Askarian H, Agheili A, Hosseinian S, Mazlumi K, Nafisi H (2010) Optimized investment to decrease the failure rate of distribution lines in order to improve saifi. In: 2010 4th International power engineering and optimization conference (PEOCO), pp 1–5. IEEE

  • Heidari A, Agelidis VG, Kia M (2014) Considerations of sectionalizing switches in distribution networks with distributed generation. IEEE Trans Power Delivery 30(3):1401–1409

    Article  Google Scholar 

  • Izadi M, Safdarian A (2018) Financial risk constrained remote controlled switch deployment in distribution networks. IET Gener Transm Distrib 12(7):1547–1553

    Article  Google Scholar 

  • Izadi M, Safdarian A (2018) A MIP model for risk constrained switch placement in distribution networks. IEEE Trans Smart Grid 10(4):4543–4553

    Article  Google Scholar 

  • Jooshaki M, Karimi-Arpanahi S, Lehtonen M, Millar RJ, Fotuhi-Firuzabad M (2020) Reliability-oriented electricity distribution system switch and tie line optimization. IEEE Access 8:130967–130978

    Article  Google Scholar 

  • Jooshaki M, Karimi-Arpanahi S, Lehtonen M, Millar RJ, Fotuhi-Firuzabad M (2021) An MILP model for optimal placement of sectionalizing switches and tie lines in distribution networks with complex topologies. IEEE Trans Smart Grid 12(6):4740–4751

    Article  Google Scholar 

  • Khani M, Safdarian A (2020) Effect of sectionalizing switches malfunction probability on optimal switches placement in distribution networks. Int J Electr Power Energy Syst 119:105973

    Article  Google Scholar 

  • Lei S, Wang J, Hou Y (2017) Remote-controlled switch allocation enabling prompt restoration of distribution systems. IEEE Trans Power Syst 33(3):3129–3142

    Article  Google Scholar 

  • Levitin G, Mazal-Tov S, Elmakis D (1994) Optimal sectionalizer allocation in electric distribution systems by genetic algorithm. Electric Power Syst Res 31(2):97–102

    Article  Google Scholar 

  • López JC, Lavorato M, Rider MJ (2016) Optimal reconfiguration of electrical distribution systems considering reliability indices improvement. Int J Electr Power Energy Syst 78:837–845

    Article  Google Scholar 

  • Lwin M, Guo J, Dimitrov N, Santoso S (2018) Protective device and switch allocation for reliability optimization with distributed generators. IEEE Trans Sustain Energy 10(1):449–458

    Article  Google Scholar 

  • Maliszewski PJ, Perrings C (2012) Factors in the resilience of electrical power distribution infrastructures. Appl Geogr 32(2):668–679

    Article  Google Scholar 

  • Maney CT (1996) Benefits of urban underground power delivery. IEEE Technol Soc Mag 15(1):12–22

    Article  Google Scholar 

  • Moradi A, Fotuhi-Firuzabad M (2007) Optimal switch placement in distribution systems using trinary particle swarm optimization algorithm. IEEE Trans Power Delivery 23(1):271–279

    Article  Google Scholar 

  • Nesterov Y (2012) Towards non-symmetric conic optimization. Optim Methods Softw 27(4–5):893–917

    Article  MathSciNet  Google Scholar 

  • Okorie P, Aliyu U, Jimoh B, Sani S (2015) Reliability indices of electric distribution network system assessment. J Electron Commun Eng Res 3(1):01–06

    Google Scholar 

  • Papp D, Yıldız S (2022) alfonso: Matlab package for nonsymmetric conic optimization. INFORMS J Comput 34(1):11–19

    Article  MathSciNet  Google Scholar 

  • Savier J, Das D (2007) Impact of network reconfiguration on loss allocation of radial distribution systems. IEEE Trans Power Delivery 22(4):2473–2480

    Article  Google Scholar 

  • Shojaei F, Rastegar M, Dabbaghjamanesh M (2020) Simultaneous placement of tie-lines and distributed generations to optimize distribution system post-outage operations and minimize energy losses. CSEE J Power Energy Syst 7(2):318–328

    Google Scholar 

  • Siirto OK, Safdarian A, Lehtonen M, Fotuhi-Firuzabad M (2015) Optimal distribution network automation considering earth fault events. IEEE Trans Smart Grid 6(2):1010–1018

    Article  Google Scholar 

  • Skajaa A, Ye Y (2015) A homogeneous interior-point algorithm for nonsymmetric convex conic optimization. Math Program 150:391–422

    Article  MathSciNet  Google Scholar 

  • Teng J-H, Liu Y-H (2003) A novel ACS-based optimum switch relocation method. IEEE Trans Power Syst 18(1):113–120

    Article  Google Scholar 

  • Tillman FA, Hwang C-L, Kuo W (1977) Optimization techniques for system reliability with redundancy: a review. IEEE Trans Reliab 26(3):148–155

    Article  MathSciNet  Google Scholar 

  • Tsao T-F, Chang Y-p, Tseng W-K (2005) Reliability and costs optimization for distribution system placement problem. In: 2005 IEEE/PES transmission and distribution conference and exposition: Asia and Pacific, pp 1–6. IEEE

  • Žarković SD, Shayesteh E, Hilber P (2021) Integrated reliability centered distribution system planning—Cable routing and switch placement. Energy Rep 7:3099–3115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Linearization of constraints (10) and (12)–(15)

In this section, we present a similar linearization to constraints (10), (12), (13), and (14), (15). Particularly, for constraint (10), we have (constraints (47)–(49) are written \(\forall l \in \mathcal {L}_f, \forall f \in \mathcal {F}\)):

$$\begin{aligned} \tau _{n,l}&\ge \overline{\lambda }_l \overline{R}_l \Bigg [1-x^{RC}_{1,l}-x^{M}_{1,l} - \sum _{s=1}^2\sum _{j \in \Omega _{n,l}} \Big (x^{RC}_{s,j} + x^{M}_{s,j} \Big ) \Bigg ] \nonumber \\&\quad + (\underline{\lambda }_l \underline{R}_l-\overline{\lambda }_l \overline{R}_l)z^2_l \qquad \forall n \in \mathcal {N}^U_l, \forall l \in \mathcal {L}_f, \forall f \in \mathcal {F}, \end{aligned}$$
(46)
$$\begin{aligned}&\qquad (1-M_f)u_l \le z^2_{l} \le u_l, \end{aligned}$$
(47)
$$\begin{aligned} z^2_{l}&\ge \Bigg [1-x^{RC}_{1,l}-x^{M}_{1,l} - \sum _{s=1}^2\sum _{j \in \Omega _{n,l}} \Big (x^{RC}_{s,j} + x^{M}_{s,j} \Big ) \Bigg ] - (1-u_l), \end{aligned}$$
(48)
$$\begin{aligned} z^2_{l}&\le \Bigg [1-x^{RC}_{1,l}-x^{M}_{1,l} - \sum _{s=1}^2\sum _{j \in \Omega _{n,l}} \Big (x^{RC}_{s,j} + x^{M}_{s,j} \Big ) \Bigg ] - \nonumber \\&\qquad (1-M_f)(1-u_l). \end{aligned}$$
(49)

For constraint (12) we have the following set of linear constraints (constraint (50) is written \(\forall n \in \mathcal {N}^D_l, \forall l \in \mathcal {L}_f, \forall f \in \mathcal {F}\) and constraints (51)–(53) are written \(\forall l \in \mathcal {L}_f, \forall f \in \mathcal {F}\)):

$$\begin{aligned}&\tau _{n,l} \ge \overline{\lambda }_l T^M \Bigg [1-x^{RC}_{2,l}-\sum _{s=1}^2\sum _{j \in \Omega _{n,l}} x^{RC}_{s,j} \Bigg ] + (\underline{\lambda }_l -\overline{\lambda }_l )T^Mz^3_l, \end{aligned}$$
(50)
$$\begin{aligned}&(1-M_f)u_l \le z^3_{l} \le u_l, \end{aligned}$$
(51)
$$\begin{aligned}&z^3_{l} \ge \Bigg [1-x^{RC}_{2,l}-\sum _{s=1}^2\sum _{j \in \Omega _{n,l}} x^{RC}_{s,j} \Bigg ] - (1-u_l) , \end{aligned}$$
(52)
$$\begin{aligned}&z^3_{l} \le \Bigg [1-x^{RC}_{2,l}-\sum _{s=1}^2\sum _{j \in \Omega _{n,l}} x^{RC}_{s,j} \Bigg ]- (1-M_f)(1-u_l). \end{aligned}$$
(53)

Similarly, constraint (13) is linearized as follows (Constraint (54) is written \(\forall n \in \mathcal {N}^U_l, \forall l \in \mathcal {L}_f, \forall f \in \mathcal {F}\) and constraints (55)–(57) are written \(\forall l \in \mathcal {L}_f, \forall f \in \mathcal {F}\)):

$$\begin{aligned}&\tau _{n,l} \ge \overline{\lambda }_l T^M \Bigg [1- \sum _{r \in \Gamma _f} x^{T,RC}_{r} \Bigg ] + (\underline{\lambda }_l -\overline{\lambda }_l )T^Mz^4_l, \end{aligned}$$
(54)
$$\begin{aligned}&(1-|\Gamma _f|)u_l \le z^4_{l} \le u_l, \end{aligned}$$
(55)
$$\begin{aligned}&z^4_{l} \ge \Bigg [1- \sum _{r \in \Gamma _f} x^{T,RC}_{r} \Bigg ] - (1-u_l), \end{aligned}$$
(56)
$$\begin{aligned}&z^4_{l} \le \Bigg [1- \sum _{r \in \Gamma _f} x^{T,RC}_{r} \Bigg ]- (1-|\Gamma _f|)(1-u_l). \end{aligned}$$
(57)

where \(\Gamma _f\) is an upper bound for the number of potential tie switches connected to feeder f.

Finally, constraints (58)–(61) correspond to the linear reformulation of constraint (14) and constraints (62)–(65) linearize constraint (15) (constraint (58) and (62) are written \(\forall n \in \mathcal {N}^D_l, \forall l \in \mathcal {L}_f, \forall f \in \mathcal {F}\) and the rest are written \(\forall l \in \mathcal {L}_f, \forall f \in \mathcal {F}\)):

$$\begin{aligned} \tau _{n,l}&\ge \overline{\lambda }_l \overline{R}_l \Bigg [1- x^{RC}_{2,l}-x^{M}_{2,l} - \sum _{s=1}^2\sum _{j \in \Omega _{n,l}} (x^{RC}_{s,j}+x^{M}_{s,j}) \Bigg ] \nonumber \\&\quad + (\underline{\lambda }_l \underline{R}_l-\overline{\lambda }_l \overline{R}_l)z^5_l, \end{aligned}$$
(58)
$$\begin{aligned}&\qquad (1-M_f)u_l \le z^5_{l} \le u_l, \end{aligned}$$
(59)
$$\begin{aligned} z^5_{l}&\ge \Bigg [1- x^{RC}_{2,l}-x^{M}_{2,l} - \sum _{s=1}^2\sum _{j \in \Omega _{n,l}} (x^{RC}_{s,j}+x^{M}_{s,j}) \Bigg ] - (1-u_l), \end{aligned}$$
(60)
$$\begin{aligned} z^5_{l}&\le \Bigg [1- x^{RC}_{2,l}-x^{M}_{2,l} - \sum _{s=1}^2\sum _{j \in \Omega _{n,l}} (x^{RC}_{s,j}+x^{M}_{s,j}) \Bigg ] - \nonumber \\ {}&\qquad (1-M_f)(1-u_l), \end{aligned}$$
(61)
$$\begin{aligned} \tau _{n,l}&\ge \overline{\lambda }_l \overline{R}_l \Bigg [1 - \sum _{r \in \Gamma _f} (x^{T,RC}_{r} +x^{T,M}_{r} ) \Bigg ] + (\underline{\lambda }_l \underline{R}_l -\overline{\lambda }_l\overline{R}_l )z^6_l, \end{aligned}$$
(62)
$$\begin{aligned}&\qquad (1-|\Gamma _f|)u_l \le z^6_{l} \le u_l, \end{aligned}$$
(63)
$$\begin{aligned} z^6_{l}&\ge \Bigg [1 - \sum _{r \in \Gamma _f} (x^{T,RC}_{r} +x^{T,M}_{r} ) \Bigg ] - (1-u_l), \end{aligned}$$
(64)
$$\begin{aligned} z^6_{l}&\le \Bigg [1 - \sum _{r \in \Gamma _f} (x^{T,RC}_{r} +x^{T,M}_{r} ) \Bigg ] - (1-|\Gamma _f|)(1-u_l). \end{aligned}$$
(65)

Appendix B: Linearization of constraint (22)

Similar to the linear reformulation (30)–(32) corresponding to constraint (21), we present a linear reformulation for nodal reliability constraint (29). Let \(\hat{d}_r=1-\overline{\mu }_r\) and \(\hat{h}_r=1-{\underline{\mu }}_r\). Also, let \(\hat{\delta }_{j,n}(i)\) be the jth subset of \(\mathcal {L}^D_n \cup \mathcal {L}_{f'}\) with i members, \(\hat{D}=\mathcal {L}^D_n \cup \mathcal {L}_{f'}\), and \(\hat{T}_i = {\hat{D} \atopwithdelims ()i}\). Further, let variable \(\hat{U}^{(i)}_{j,n} \in [0,1]\) represent the value of \((\hat{d}_r\overline{t}_r + \hat{h}_r \underline{t}_r)\prod _{l \in \delta _{j,n}(i)} u_l\) corresponding to the jth term of polynomial with degree \(i+1\), where \(\hat{U}^{(i)}_{j,n}\) takes 0, \(\hat{d}_r\), or \(\hat{h}_r\). The MILP reformulation of constraint (29) is obtained through constraints (66) to (69) (constraints (67)–(69) are written \(\forall l \in \hat{\delta }_{j,n}(i), \forall j \in \{1,\ldots , \hat{T}_i\}, \forall i \in \{1,\ldots , \hat{D}\}, n \in \mathcal {N}^*_f, \forall (f,r,f') \in \mathcal {V}\)):

$$\begin{aligned}&\hat{v}_0 (\hat{d}_r\overline{t}_r + \hat{h}_r \underline{t}_r) + \sum _{i=1}^{\hat{D}} \sum _{j = 1}^{\hat{T}_i} \hat{v}^{(i)}_{j,n}\hat{U}^{(i)}_{j,n} \ge \phi _n p_{n,r} \nonumber \\&\qquad \qquad \qquad \qquad \forall n \in \mathcal {N}^*_f, \forall (f,r,f') \in \mathcal {V}, \end{aligned}$$
(66)
$$\begin{aligned}&\hat{U}^{(i)}_{j,n} \le \overline{u}_l, \qquad \qquad \quad \end{aligned}$$
(67)
$$\begin{aligned}&\hat{U}^{(i)}_{j,n} \le \hat{d}_r\overline{t}_r + \hat{h}_r \underline{t}_r, \qquad \qquad \quad \end{aligned}$$
(68)
$$\begin{aligned}&\hat{U}^{(i)}_{j,n} \ge \hat{d}_r\overline{t}_r + \hat{h}_r \underline{t}_r + \sum _{\forall l \in \delta _{j,n}(i)} u_l - |\delta _{j,n}(i)|, \qquad \end{aligned}$$
(69)

where

$$\begin{aligned}&\hat{v}^{(i)}_{j,n} = \prod _{l \in \delta _n(i)} h_l \prod _{{l} \in \{\mathcal {L}^D_n \cup \mathcal {L}_{f'}\}/\delta _n(i)} d_{{l}} f\qquad \forall j \in \{1,\ldots , \hat{T}_i\}, \nonumber \\&\qquad \quad \qquad \forall i \in \{1,\ldots , \hat{D}\}, n \in \mathcal {N}^*_f, \forall (f,r,f') \in \mathcal {V}. \end{aligned}$$
(70)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filabadi, M.D., Chen, C. & Conejo, A. Mixed-integer exponential conic optimization for reliability enhancement of power distribution systems. Optim Eng (2023). https://doi.org/10.1007/s11081-023-09876-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11081-023-09876-y

Keywords

Navigation