Skip to main content
Log in

Triggering a variety of Nash-equilibria in oligopolistic electricity markets

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

Liberalized electricity markets promise a cost-efficient operation and expansion of power systems but may as well introduce opportunities for strategic gaming for price-making agents. Given the rapid transition of today’s energy systems, unconventional generation and consumption patterns are emerging, presenting new challenges for regulators and policymakers to prevent strategic behavior. The strategic offering of various price-making agents in oligopolistic electricity markets resembles a multi-leader-common-follower game. The decision problem of each agent can be modeled as a bi-level optimization problem, consisting of the strategic agent’s decision problem at the upper-level, and the market clearing at the lower-level. When modeling a multi-leader game, i.e., a set of bi-level optimization problems, the resulting equilibrium problem with equilibrium constraints poses several challenges. Real-life applicability or policy-oriented studies are challenged by the potential multiplicity of equilibria and the difficulty of exhaustively exploring this range of equilibria. In this paper, the range of equilibria is explored by using a novel simultaneous solution method. The proposed solution technique relies on applying Scholtes’ regularization before concatenating the strategic actor’s decision problems’ optimality conditions. Hence, the attained solutions are stationary points with high confidence. In a stylized example, different strategic agents, including an energy storage system, are modeled to capture the asymmetric opportunities they may face when exercising market power. Our analysis reveals that these models’ outcomes may span a broad range, impacting the derived economic metrics significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The primal and dual reformulations, when applied on this problem type, results in as many bi-linear terms in the SDC as primal decision variables the upper-level agent has. Whereas KKT conditions would introduce as many CS constraints, i.e., bi-linear terms, as primal inequality constraints are included in the lower-level problem.

  2. We remark that the framework allows for any convex LL formulation, such as quadratic (Dorn 1960) or second-order cone programs.

  3. A too-small choice may lead to an ill-conditioned problem; on the other hand, an unnecessarily large value could result in constraint violations and fairly optimistic objective values.

  4. The model formulation for MPPDCs differs in the validation algorithm. As opposed to the simultaneously solved NCP model, in the validation loop complex bidding (De Vivero-Serrano et al. 2019) is used. This implies that the energy content related constraints are part of the LL problem instead of the UL one. As such, we avoid rejecting candidate equilibria because of the asymmetric view on these constraints.

Abbreviations

\(i \in \mathcal {I}\) :

Set of conventional generators

\(k \in \mathcal {K}\) :

Set of renewable generators

\(l \in \mathcal {L}\) :

Set of energy storage systems

\(t \in \mathcal {T}\) :

Set of time steps

\(\eta ^{ch}, \eta ^{dch}\) :

Charging and discharging efficiency (–)

\({\overline{D}_t}\) :

Maximum demand (MWh)

\({c^{D}_t}\) :

Willingness-to-pay of the demand (k€/MWh)

\({E^{ESS,max}}\) :

Energy capacity of the ESS (MWh)

\({OPEX^{G}_{i}}\) :

Operational expenditure of the CG (k€/MWh)

\({p^{cap}}\) :

Price cap in the day-ahead market (k€/MWh)

\({P^{ESS,max}}\) :

Power capacity of the ESS (MW)

\({p^{floor}}\) :

Price floor in the day-ahead market (k€/MWh)

\({P^{G,max}_{i}}\) :

Power capacity of the CG (MW)

\({P^{R,forecast}_{k,t}}\) :

Renewable production forecast (MWh)

\({\overline{CH}_{t}}\) :

Quantity bid of the ESS for charging (MWh)

\({\overline{DCH}_{t}}\) :

Quantity bid of the ESS for discharging (MWh)

\({\overline{G}_{i,t}}\) :

Quantity bid of the CG (MWh)

\({\overline{W}_{k,t}}\) :

Quantity bid of the RG (MWh)

\({c^{CH}_t}\) :

Price bid of the ESS for charging (k€/MWh)

\({c^{DCH}_t}\) :

Price bid of the ESS for discharging (k€/MWh)

\({c^{G}_{i,t}}\) :

Price bid of the CG (k€/MWh)

\({c^{W}_{k,t}}\) :

Price bid of the RG (k€/MWh)

\({ch_{t}}\) :

Dispatched charging of the ESS (MWh)

\({d_{t}}\) :

Cleared demand (MWh)

\({dch_{t}}\) :

Dispatched discharging of the ESS (MWh)

\({g_{i,t}}\) :

Dispatched quantity for the CG (MWh)

\({SoC_{t}}\) :

State-of-charge variable of the ESS (MWh)

\({w_{k,t}}\) :

Dispatched quantity for the RG (MWh)

References

  • Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: a fresh approach to numerical computing. SIAM Rev 59:65–98. https://doi.org/10.1137/141000671

    Article  MathSciNet  MATH  Google Scholar 

  • Byrd RH, Nocedal J, Waltz RA (2006) K nitro: an integrated package for nonlinear optimization. In: Large-scale nonlinear optimization. Springer, pp 35–59

  • Cardell JB, Hitt CC, Hogan WW (1997) Market power and strategic interaction in electricity networks. Resour Energy Econ 19:109–137

    Article  Google Scholar 

  • Contereras-Ocaña JE, Wang Y, Ortega-Vazquez MA, Zhang B (2017) Energy storage: Market power and social welfare. In: 2017 IEEE power energy society general meeting, Chicago, IL, USA, pp 1–5

  • Crampes C, Moreaux M (2001) Water resource and power generation. Int J Ind Organ 19:975–997

    Article  Google Scholar 

  • De Vivero-Serrano G, Bruninx K, Delarue E (2019) Implications of bid structures on the offering strategies of merchant energy storage systems. Appl Energy 251:113375

    Article  Google Scholar 

  • Debia S, Pineau P-O, Siddiqui AS (2021) Strategic storage use in a hydro-thermal power system with carbon constraints. Energy Econ 98:105261

    Article  Google Scholar 

  • Dempe S (2002) Foundations of bilevel programming. Springer, Berlin

    MATH  Google Scholar 

  • Dempe S (2019) Computing locally optimal solutions of the bilevel optimization problem using the kkt approach. In: International conference on mathematical optimization theory and operations research. Springer, pp 147–157

  • Dorn WS (1960) Duality in quadratic programming. Q Appl Math 18:155–162

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrenmann A (2004) Manifolds of multi-leader cournot equilibria. Oper Res Lett 32:121–125

    Article  MathSciNet  MATH  Google Scholar 

  • Elia NV (2018) Grid data. http://www.elia.be/en/grid-data

  • Facchinei F, Kanzow C (2007) Generalized Nash equilibrium problems. 4OR 5:173–210

    Article  MathSciNet  MATH  Google Scholar 

  • Fletcher R, Leyffer S (2004) Solving mathematical programs with complementarity constraints as nonlinear programs. Optim Methods Softw 19:15–40

    Article  MathSciNet  MATH  Google Scholar 

  • Fortuny-Amat J, McCarl B (1981) A representation and economic interpretation of a two-level programming problem. J Oper Res Soc 32:783–792

    Article  MathSciNet  MATH  Google Scholar 

  • Gabriel SA, Conejo AJ, Fuller JD, Hobbs BF, Ruiz C (2013) Complementarity modeling in energy markets. Springer, New York

    Book  MATH  Google Scholar 

  • Gould F, Tolle JW (1971) A necessary and sufficient qualification for constrained optimization. SIAM J Appl Math 20:164–172

    Article  MathSciNet  MATH  Google Scholar 

  • Harker PT (1991) Generalized Nash games and quasi-variational inequalities. Eur J Oper Res 54:81–94

    Article  MATH  Google Scholar 

  • Hobbs BF, Metzler CB, Pang J-S (2000) Strategic gaming analysis for electric power systems: an mpec approach. IEEE Trans Power Syst 15:638–645

    Article  Google Scholar 

  • Hoheisel T, Kanzow C, Schwartz A (2013) Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math Program 137:257–288

    Article  MathSciNet  MATH  Google Scholar 

  • Hu X, Ralph D (2007) Using epecs to model bilevel games in restructured electricity markets with locational prices. Oper Res 55:809–827

    Article  MathSciNet  MATH  Google Scholar 

  • Huppmann D, Egerer J (2015) National-strategic investment in European power transmission capacity. Eur J Oper Res 247:191–203

    Article  MathSciNet  MATH  Google Scholar 

  • Kazempour SJ, Conejo AJ, Ruiz C (2013) Generation investment equilibria with strategic producers-part i: Formulation. IEEE Trans Power Syst 28:2613–2622

    Article  Google Scholar 

  • Le Cadre H, Mou Y, Höschle H (2022) Parametrized inexact-admm based coordination games: a normalized Nash equilibrium approach. Eur J Oper Res 296:696–716

    Article  MathSciNet  MATH  Google Scholar 

  • Leyffer S, Munson T (2010) Solving multi-leader-common-follower games. Optim Methods Softw 25(4):601–623

    Article  MathSciNet  MATH  Google Scholar 

  • Luenberger DG, Ye Y et al (1984) Linear and nonlinear programming, vol 2. Springer, Berlin

    MATH  Google Scholar 

  • Mengelkamp E, Garttner J, Weinhardt C (2017) The role of energy storage in local energy markets. In: 2017 14th International conference on the European energy market (EEM). IEEE, pp 1–6

  • Nasrolahpour E, Kazempour J, Zareipour H, Rosehart WD (2017) A bilevel model for participation of a storage system in energy and reserve markets. IEEE Trans Sustain Energy 9:582–598

    Article  Google Scholar 

  • Philpott A, Ferris M, Wets R (2016) Equilibrium, uncertainty and risk in hydro-thermal electricity systems. Math Program 157:483–513

    Article  MathSciNet  MATH  Google Scholar 

  • Pineda S, Bylling H, Morales J (2018) Efficiently solving linear bilevel programming problems using off-the-shelf optimization software. Optim Eng 19:187–211

    Article  MathSciNet  MATH  Google Scholar 

  • Pineda S, Morales JM (2019) Solving linear bilevel problems using big-ms: not all that glitters is gold. IEEE Trans Power Syst 34:2469–2471

    Article  Google Scholar 

  • Pozo D, Sauma E, Contreras J (2017) Basic theoretical foundations and insights on bilevel models and their applications to power systems. Ann Oper Res 254:303–334

    Article  MathSciNet  MATH  Google Scholar 

  • Pozo D, Sauma E, Contreras J (2017) When doing nothing may be the best investment action: pessimistic anticipative power transmission planning. Appl Energy 200:383–398

    Article  Google Scholar 

  • Ralph D (2008) Mathematical programs with complementarity constraints in traffic and telecommunications networks. Philos Trans R So A: Math Phys Eng Sci 366:1973–1987

    Article  MathSciNet  MATH  Google Scholar 

  • Ralph D, Smeers Y (2006) Epecs as models for electricity markets. In: 2006 IEEE PES power systems conference and exposition. IEEE, pp 74–80

  • Ralph D, Wright SJ (2004) Some properties of regularization and penalization schemes for mpecs. Optim Methods Softw 19:527–556

    Article  MathSciNet  MATH  Google Scholar 

  • Ruiz C, Conejo AJ (2009) Pool strategy of a producer with endogenous formation of locational marginal prices. IEEE Trans Power Syst 24:1855–1866

    Article  Google Scholar 

  • Ruiz C, Conejo AJ, Smeers Y (2012) Equilibria in an oligopolistic electricity pool with stepwise offer curves. IEEE Trans Power Syst 27:752–761

    Article  Google Scholar 

  • Schillemans A, Serrano GDV, Bruninx K (2018) Strategic participation of merchant energy storage in joint energy-reserve and balancing markets. In: Seminar on business models and regulation for storage, Date: 2018/11/30-2018/11/30, Location: Brussels, Belgium

  • Scholtes S (2001) Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J Optim 11:918–936

    Article  MathSciNet  MATH  Google Scholar 

  • Shahmohammadi A, Sioshansi R, Conejo AJ, Afsharnia S (2018) The role of energy storage in mitigating ramping inefficiencies caused by variable renewable generation. Energy Convers Manag 162:307–320

    Article  Google Scholar 

  • Sherali HD (1984) A multiple leader Stackelberg model and analysis. Oper Res 32:390–404

    Article  MathSciNet  MATH  Google Scholar 

  • Shi C, Lu J, Zhang G, Zhou H (2006) An extended branch and bound algorithm for linear bilevel programming. Appl Math Comput 180:529–537

    MathSciNet  MATH  Google Scholar 

  • Siddiqui S, Gabriel SA (2013) An sos1-based approach for solving mpecs with a natural gas market application. Netw Spat Econ 13:205–227

    Article  MathSciNet  MATH  Google Scholar 

  • Sinha A, Malo P, Deb K (2017) A review on bilevel optimization: From classical to evolutionary approaches and applications. IEEE Trans Evol Comput 22:276–295

    Article  Google Scholar 

  • Sioshansi R (2014) When energy storage reduces social welfare. Energy Econ 41:106–116

    Article  Google Scholar 

  • Steffensen S, Bittner M (2014) Relaxation approach for equilibrium problems with equilibrium constraints. Comput Oper Res 41:333–345

    Article  MathSciNet  MATH  Google Scholar 

  • Su C-L (2004) A sequential ncp algorithm for solving equilibrium problems with equilibrium constraints. Department of Management Science and Engineering, Stanford University, Stanford

    Google Scholar 

  • Vespermann N, Delikaraoglou S, Pinson P (2017) Offering strategy of a price-maker energy storage system in day-ahead and balancing markets. In: 2017 IEEE Manchester PowerTech. IEEE, pp 1–6

  • Von Stackelberg H (2010) Market structure and equilibrium. Springer, Berlin

    MATH  Google Scholar 

  • Waltz RA, Morales JL, Nocedal J, Orban D (2006) An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math Program 107:391–408

    Article  MathSciNet  MATH  Google Scholar 

  • Zou P, Chen Q, Xia Q, He G, Kang C, Conejo AJ (2016) Pool equilibria including strategic storage. Appl Energy 177:260–270

    Article  Google Scholar 

Download references

Acknowledgements

M. Dolanyi’s work has been funded by the University of Leuven’s C2 Research Project C24/16/018 entitled “Energy Storage as a Disruptive Technology in the Energy System of the Future”. K. Bruninx is a post-doctoral research fellow of the Flanders Research Foundation (FWO) (Grant No. 12J3320N) at the University of Leuven (KU Leuven) Energy Institute, TME Branch (Energy Conversion), B-3001 Leuven, Belgium) and EnergyVille, B-3600 Genk, Belgium. The authors gratefully acknowledge the constructive comments of Anthony Papavasiliou (CORE, Université Catholique de Louvain), Salvador Pineda (University of Málaga), and Panagiotis Patrinos (ESAT, KU Leuven).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihály Dolányi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The models presented in Sect. 4 are available to download at GitHub under a Creative Commons Attribution 4.0 International License.

Appendices

Appendix A: Single-level reformulation of ESS problem

We present the required steps to transform the bi-level formulation of the ESS owner problem (i) into the single-level (MPPDC) equivalent by the primal-dual optimality conditions, (ii) into a nonlinear complementarity problem by the KKT optimality conditions of the MPPDC form.

1.1 A.1 MPPDC ESS

The obtained single-level problem, after applying primal-dual reformulation on the LL Problem (7):

$$\begin{aligned}&\mathcal {F}_{ESS}^{l} = \max _{\Xi _{UL}^{ESS}} \sum _{t \in \mathcal {T}} \lambda _{t} \cdot (dch_{l,t} - ch_{l,t}) \end{aligned}$$
(A.1a)
$$\begin{aligned}&\text {subject to} \nonumber \\&p^{floor} \le c^{CH}_{l,t} \le p^{cap} : \quad (\underline{\kappa }_{l,t}^{ch}, \overline{\kappa }_{l,t}^{ch}) \quad \forall t \end{aligned}$$
(A.1b)
$$\begin{aligned}&p^{floor} \le c^{DCH}_{l,t} \le p^{cap} : \quad (\underline{\kappa }_{l,t}^{dch}, \overline{\kappa }_{l,t}^{dch}) \quad \forall t \end{aligned}$$
(A.1c)
$$\begin{aligned}&0 \le \overline{CH}_{l,t} \le P^{ESS,max}_l: \quad (\underline{\omega }_{l,t}^{ch}, \overline{\omega }_{l,t}^{ch}) \quad \forall t \end{aligned}$$
(A.1d)
$$\begin{aligned}&0 \le \overline{DCH}_{l,t} \le P^{ESS,max}_l: \quad (\underline{\omega }_{l,t}^{dch}, \overline{\omega }_{l,t}^{dch}) \quad \forall t \end{aligned}$$
(A.1e)
$$\begin{aligned}&0 \le SoC_{l,t} \le E^{ESS,max}_l: \quad (\underline{\omega }_{l,t}^{soc}, \overline{\omega }_{l,t}^{soc}) \quad \forall t \end{aligned}$$
(A.1f)
$$\begin{aligned}&SoC_{l,t} = SoC_{l,t-1} + \eta _l^{ch} ch_{l,t} - dch_{l,t}/\eta _l^{dch}: \quad (\mu _{l,t}^{soc}) \quad \forall t \end{aligned}$$
(A.1g)
$$\begin{aligned}&SoC_{l,T} = SoC_{0}: \quad (\mu _{0}^{soc}) \end{aligned}$$
(A.1h)

The resulting constraints from the LL reformulated via duality:

$$\begin{aligned}&d_{t} \! + \! \sum _{l \in \mathcal {L}}\! (ch_{l,t} \!- \! dch_{l,t}) \! - \!\sum _{k \in \mathcal {K}}\! w_{k,t} \! - \!\sum _{i \in \mathcal {I}} \! g_{i,t} \!= \! 0: \quad (\Pi _{j,t}) \quad \forall t \end{aligned}$$
(A.1i)
$$\begin{aligned}&0\le g_{i,t} \le \overline{G}_{i,t}: \quad (\underline{\nu }_{j,i,t}^{g}, \overline{\nu }_{j,i,t}^{g}) \quad \forall i, \forall t \end{aligned}$$
(A.1j)
$$\begin{aligned}&0\le w_{k,t} \le \overline{W}_{k,t}: \quad (\underline{\nu }_{j,k,t}^{w}, \overline{\nu }_{j,k,t}^{w}) \quad \forall k, \forall t\end{aligned}$$
(A.1k)
$$\begin{aligned}&0\le ch_{l,t} \le \overline{CH}_{l,t}: \quad (\underline{\nu }_{j,l,t}^{ch}, \overline{\nu }_{j,l,t}^{ch}) \quad \forall l, \forall t\end{aligned}$$
(A.1l)
$$\begin{aligned}&0\le dch_{l,t} \le \overline{DCH}_{l,t}: (\underline{\nu }_{j,l,t}^{dch}, \overline{\nu }_{j,l,t}^{dch}) \quad \forall l, \forall t\end{aligned}$$
(A.1m)
$$\begin{aligned}&0\le d_{t} \le \overline{D}_{t}: \quad (\underline{\nu }_{j,t}^{d}, \overline{\nu }_{j,t}^{d}) \quad \forall t \end{aligned}$$
(A.1n)
$$\begin{aligned}&c_{i,t}^{g} - \lambda _{t} - \underline{\beta }_{i,t}^{g} + \overline{\beta }_{i,t}^{g} = 0: \quad (\Psi _{j,i,t}^{g}) \quad \forall i, \forall t\end{aligned}$$
(A.1o)
$$\begin{aligned}&c_{k,t}^{w} - \lambda _{t} - \underline{\beta }_{k,t}^{w} + \overline{\beta }_{k,t}^{w} = 0: \quad (\Psi _{j,k,t}^{w}) \quad \forall k, \forall t \end{aligned}$$
(A.1p)
$$\begin{aligned}&c_{l,t}^{dch} - \lambda _{t} - \underline{\beta }_{l,t}^{dch} + \overline{\beta }_{l,t}^{dch} = 0: \quad (\Psi _{j,l,t}^{dch}) \quad \forall l, \forall t \end{aligned}$$
(A.1q)
$$\begin{aligned}&- c_{l,t}^{ch} + \lambda _{t} - \underline{\beta }_{l,t}^{ch} + \overline{\beta }_{l,t}^{ch} = 0: \quad (\Psi _{j,l,t}^{ch}) \quad \forall l, \forall t \end{aligned}$$
(A.1r)
$$\begin{aligned}&- c_{t}^{d} + \lambda _{t} - \underline{\beta }_{t}^{d} + \overline{\beta }_{t}^{d} = 0: \quad (\Psi _{j,t}^{d})\end{aligned}$$
(A.1s)
$$\begin{aligned}&\underline{\beta }_{i,t}^{g}, \ \overline{\beta }_{i,t}^{g}, \underline{\beta }_{k,t}^{w}, \ \overline{\beta }_{k,t}^{w}, \underline{\beta }_{l,t}^{dch}, \ \overline{\beta }_{l,t}^{dch}, \underline{\beta }_{l,t}^{ch}, \ \overline{\beta }_{l,t}^{ch}, \underline{\beta }_{t}^{d}, \ \overline{\beta }_{t}^{d} \ge 0: \quad \forall i, \forall k, \forall l, \forall t \nonumber \\&(\underline{\delta }_{j,i,t}^{g}, \overline{\delta }_{j,i,t}^{g}, \underline{\delta }_{j,k,t}^{w}, \overline{\delta }_{j,k,t}^{w}, \underline{\delta }_{j,l,t}^{dch}, \overline{\delta }_{j,l,t}^{dch}, \underline{\delta }_{j,l,t}^{ch}, \overline{\delta }_{j,l,t}^{ch}, \underline{\delta }_{j,t}^{d}, \overline{\delta }_{j,t}^{d}) \end{aligned}$$
(A.1t)
$$\begin{aligned}&s^{dch}_{l,t} - \overline{\beta }_{l,t}^{dch} \cdot \overline{DCH}_{l,t} \le \epsilon _{1}: \quad (\overline{\gamma }^{dch}_{j,l,t}) \end{aligned}$$
(A.1u)
$$\begin{aligned}&-s^{dch}_{l,t} + \overline{\beta }_{l,t}^{dch} \cdot \overline{DCH}_{l,t} \le \epsilon _{1}: \quad (\underline{\gamma }^{dch}_{j,l,t}) \end{aligned}$$
(A.1v)
$$\begin{aligned}&s^{ch}_{l,t} - \overline{\beta }_{l,t}^{ch} \cdot \overline{CH}_{l,t} \le \epsilon _{1}: \quad (\overline{\gamma }^{ch}_{j,l,t}) \end{aligned}$$
(A.1w)
$$\begin{aligned} -&s^{ch}_{l,t} + \overline{\beta }_{l,t}^{ch} \cdot \overline{CH}_{l,t} \le \epsilon _{1}: \quad (\underline{\gamma }^{ch}_{j,l,t}) \end{aligned}$$
(A.1x)
$$\begin{aligned}&- \sum _{t \in \mathcal {T}}(d_{t} \cdot c^{D}_{t}) \ + \sum _{i \in \mathcal {I},t \in \mathcal {T}}(g_{i,t} \cdot c^{G}_{i,t}) + \sum _{k \in \mathcal {K},t \in \mathcal {T}}(w_{k,t} \cdot c^{W}_{k,t}) \nonumber \\&\quad + \sum _{l \in \mathcal {L},t \in \mathcal {T}} (dch_{l,t} \cdot c^{DCH}_{l,t} - ch_{l,t} \cdot c^{CH}_{l,t}) \nonumber \\&\quad + \sum _{i \in \mathcal {I},t \in \mathcal {T}} (\overline{\beta }_{i,t}^{g} \cdot \overline{G}_{i,t})\nonumber \\&\quad + \sum _{k \in \mathcal {K}, t \in \mathcal {T}} (\overline{\beta }_{k,t}^{w} \cdot \overline{W}_{k,t}) + \sum _{l \in \mathcal {L},t \in \mathcal {T}}(s^{dch}_{l,t} + s^{ch}_{l,t}) + \sum _{t \in \mathcal {T}} (\overline{\beta }_{t}^{d} \cdot \overline{D}_{t}) = 0: \quad (\sigma _{j}^{PD}) \end{aligned}$$
(A.1y)

where \(\epsilon _{1}\) is the first-stage regularization parameter for the nonlinear, non-convex strong duality constraint.

1.2 A.2 Linearization of the ESS’ objective

To linearize the initially bi-linear objective function following the method of Ruiz and Conejo (2009), we make use of the SDC equation (A.1y), the stationary conditions Eqs. A.1qA.1r and the complementary slackness (CS) constraints of the LL. As the LL problem is convex, we know that the following CS conditions hold:

$$\begin{aligned}&\underline{\beta }_{l,t}^{dch} \cdot dch_{l,t} = 0 \end{aligned}$$
(A.2a)
$$\begin{aligned}&\overline{\beta }_{l,t}^{dch} \cdot dch_{l,t} = \overline{\beta }_{l,t}^{dch} \cdot \overline{DCH}_{l,t}\end{aligned}$$
(A.2b)
$$\begin{aligned}&\underline{\beta }_{l,t}^{ch} \cdot ch_{l,t} = 0 \end{aligned}$$
(A.2c)
$$\begin{aligned}&\overline{\beta }_{l,t}^{ch} \cdot ch_{l,t} = \overline{\beta }_{l,t}^{ch} \cdot \overline{CH}_{l,t} \end{aligned}$$
(A.2d)

Furthermore multiplying Eqs. A.1qA.1r by \(dch_{l,t}\) and \(ch_{l,t}\) gives:

$$\begin{aligned} -&dch_{l,t} \cdot c_{l,t}^{dch} = -\lambda _{t} \cdot dch_{l,t} - \underline{\beta }_{l,t}^{dch} \cdot dch_{l,t} + \overline{\beta }_{l,t}^{dch} \cdot dch_{l,t} \end{aligned}$$
(A.3a)
$$\begin{aligned}&ch_{l,t} \cdot c_{l,t}^{ch} = \lambda _{t} \cdot ch_{l,t} - \underline{\beta }_{l,t}^{ch} \cdot ch_{l,t} + \overline{\beta }_{l,t}^{ch} \cdot ch_{l,t} \end{aligned}$$
(A.3b)

After substituting terms of Eq. A.2 in Eq. A.3:

$$\begin{aligned}&-dch_{l,t} \cdot c_{l,t}^{dch} = -\lambda _{t} \cdot dch_{l,t} + \overline{\beta }_{l,t}^{dch} \cdot \overline{DCH}_{l,t} \end{aligned}$$
(A.4a)
$$\begin{aligned}&ch_{l,t} \cdot c_{l,t}^{ch} = \lambda _{t} \cdot ch_{l,t} + \overline{\beta }_{l,t}^{ch} \cdot \overline{CH}_{l,t} \end{aligned}$$
(A.4b)

And lastly, to get the linearized equivalent of \(\mathcal {F}_{ESS}^{l}\), we substitute Eq. A.4a in the SDC (Eq. A.1y):

$$\begin{aligned}&\lambda _{t} \cdot (dch_{l,t} - ch_{l,t}) = -\sum _{t \in \mathcal {T}}(d_{t} \cdot c^{D}_{t}) \ + \sum _{i \in \mathcal {I}, t \in \mathcal {T}}(g_{i,t} \cdot c^{G}_{i,t}) + \sum _{k \in \mathcal {K}, t \in \mathcal {T}}(w_{k,t} \cdot c^{W}_{k,t}) \nonumber \\&+ \sum _{i \in \mathcal {I}, t \in \mathcal {T}} (\overline{\beta }_{i,t}^{g} \cdot \overline{G}_{i,t}) + \sum _{k \in \mathcal {K}, t \in \mathcal {T}} (\overline{\beta }_{k,t}^{w} \cdot \overline{W}_{k,t}) + \sum _{t \in \mathcal {T}} (\overline{\beta }_{t}^{d} \cdot \overline{D}_{t}) \end{aligned}$$
(A.5)

We refer to the RHS of (A.5) as \(\mathcal {D}_{ESS}^{l}\). Thus MPPDC-ESS with linearized objective function constitutes the objective function (A.5) and Constraints (A.1bA.1y).

1.3 A.3 SCR-NCP, ESS

We recast MPPDC-ESS via its KKT conditions. This results in a nonlinear complementarity problem (NCP). After adding the regularization term \(\epsilon _{2}\) as shown in Section (3.2), we obtain the SCR-NCP formulation: Primal feasibility:

$$\begin{aligned} \text {Eq. } A.1b-A.1y \end{aligned}$$

Dual feasibility:

All dual variables belonging to the inequality constraints of Eq. A.1b-A.1y are greater than or equal to 0.

$$\begin{aligned}&\text {Lagrangian stationarity:} \nonumber \\&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial s^{DCH}_{l,t}} : - \underline{\gamma }^{dch}_{l,t} + \overline{\gamma }^{dch}_{l,t} +\sigma _{j}^{PD} = 0&\forall l, \forall t \end{aligned}$$
(A.6a)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial s^{CH}_{l,t}} : - \underline{\gamma }^{ch}_{l,t} + \overline{\gamma }^{ch}_{l,t} +\sigma _{j}^{PD} = 0&\forall l, \forall t \end{aligned}$$
(A.6b)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial c^{DCH}_{l,t}} : - \underline{\kappa }^{dch}_{l,t} + \overline{\kappa }^{dch}_{l,t} +\sigma _{j}^{PD} \cdot dch_{l,t} + \psi ^{dch}_{l,t} = 0&\forall l, \forall t \end{aligned}$$
(A.6c)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial c^{CH}_{l,t}} : - \underline{\kappa }^{ch}_{l,t} + \overline{\kappa }^{ch}_{l,t} -\sigma _{j}^{PD} \cdot ch_{l,t} - \psi ^{ch}_{l,t} = 0&\forall l, \forall t \end{aligned}$$
(A.6d)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial \overline{DCH}_{l,t}} : - \underline{\omega }^{dch}_{l,t} + \overline{\omega }^{dch}_{l,t} - \overline{\nu }^{dch}_{j,l,t} - \overline{\gamma }^{dch}_{j,l,t} \cdot \overline{\beta }^{dch}_{l,t} + \underline{\gamma }^{dch}_{j,l,t} \cdot \overline{\beta }^{dch}_{l,t} = 0&\forall l, \forall t \end{aligned}$$
(A.6e)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial \overline{CH}_{l,t}} : - \underline{\omega }^{ch}_{l,t} + \overline{\omega }^{ch}_{l,t} - \overline{\nu }^{ch}_{j,l,t} - \overline{\gamma }^{ch}_{j,l,t} \cdot \overline{\beta }^{ch}_{l,t} + \underline{\gamma }^{ch}_{j,l,t} \cdot \overline{\beta }^{ch}_{l,t} = 0&\forall l, \forall t \end{aligned}$$
(A.6f)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial dch_{l,t}} : - \frac{\mu ^{soc}_{l,t}}{\eta ^{dch}_{l}} -\Pi _{j,t} - \underline{\nu }^{dch}_{j,l,t} + \overline{\nu }^{dch}_{j,l,t} + \sigma _{j}^{PD} \cdot c^{DCH}_{l,t} = 0&\forall l, \forall t \end{aligned}$$
(A.6g)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial ch_{l,t}} : \mu ^{soc}_{l,t} \cdot \eta ^{ch}_{l} + \Pi _{j,t} - \underline{\nu }^{ch}_{j,l,t} + \overline{\nu }^{ch}_{j,l,t} - \sigma _{j}^{PD} \cdot c^{CH}_{l,t} = 0&\forall l, \forall t \end{aligned}$$
(A.6h)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial g_{i,t}} : c^{G}_{i,t} - \Pi _{j,t} - \underline{\nu }^{g}_{j,i,t} + \overline{\nu }^{g}_{j,i,t} + \sigma _{j}^{PD} \cdot c^{G}_{i,t} = 0&\forall i, \forall t \end{aligned}$$
(A.6i)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial w_{k,t}} : c^{W}_{i,t} - \Pi _{j,t} - \underline{\nu }^{w}_{j,k,t} + \overline{\nu }^{w}_{j,k,t} + \sigma _{j}^{PD} \cdot c^{W}_{k,t} = 0&\forall k, \forall t \end{aligned}$$
(A.6j)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial d_{t}} : - c^{D}_{t} + \Pi _{j,t} - \underline{\nu }^{d}_{j,t} + \overline{\nu }^{d}_{j,t} + \sigma _{j}^{PD} \cdot c^{D}_{t} = 0&\forall t \end{aligned}$$
(A.6k)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial SoC_{l,t}} : \mu ^{soc}_{l,1} - \mu ^{soc}_{l,t} + \mu ^{soc}_{0} - \underline{\omega }_{l,t}^{soc} + \overline{\omega }_{l,t}^{soc} = 0&t = \mathcal {T} \end{aligned}$$
(A.6l)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial SoC_{l,t}} : \mu ^{soc}_{l,t+1} - \mu ^{soc}_{l,t} - \underline{\omega }_{l,t}^{soc} + \overline{\omega }_{l,t}^{soc} = 0&\forall t \backslash \mathcal {T} \end{aligned}$$
(A.6m)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial \lambda _{t}} : \Psi _{j,t}^{d} - \sum _{i \in \mathcal {I}}\Psi _{j,i,t}^{g} - \sum _{k \in \mathcal {K}}\Psi _{j,k,t}^{w} + \sum _{l \in \mathcal {L}}\Big (\Psi _{j,l,t}^{ch} -\Psi _{j,l,t}^{dch}\Big ) = 0 \end{aligned}$$
(A.6n)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial \overline{\beta }_{l,t}^{dch}} : - \overline{\gamma }^{dch}_{j,l,t} \cdot \overline{DCH}_{l,t} + \underline{\gamma }^{dch}_{j,l,t} \cdot \overline{DCH}_{l,t} + \Psi _{j,l,t}^{dch} - \overline{\delta }_{j,l,t}^{dch} \end{aligned}$$
(A.6o)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial \underline{\beta }_{l,t}^{dch}} : - \Psi _{j,l,t}^{dch} - \underline{\delta }_{j,l,t}^{dch} \end{aligned}$$
(A.6p)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial \overline{\beta }_{l,t}^{ch}} : - \overline{\gamma }^{ch}_{j,l,t} \cdot \overline{CH}_{l,t} + \underline{\gamma }^{ch}_{j,l,t} \cdot \overline{CH}_{l,t} + \Psi _{j,l,t}^{ch} - \overline{\delta }_{j,l,t}^{ch} \end{aligned}$$
(A.6q)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial \underline{\beta }_{l,t}^{ch}} : - \Psi _{j,l,t}^{ch} - \underline{\delta }_{j,l,t}^{ch} \end{aligned}$$
(A.6r)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial \overline{\beta }_{i,t}^{g}} : \overline{G}_{i,t} + \sigma _{j}^{PD} \cdot \overline{G}_{i,t} + \Psi _{j,i,t}^{g} - \overline{\delta }_{j,i,t}^{g} \end{aligned}$$
(A.6s)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial \underline{\beta }_{i,t}^{g}} : - \Psi _{j,i,t}^{g} - \underline{\delta }_{j,i,t}^{g} \end{aligned}$$
(A.6t)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial \overline{\beta }_{k,t}^{w}} : \overline{W}_{k,t} + \sigma _{j}^{PD} \cdot \overline{W}_{k,t} + \Psi _{j,k,t}^{w} - \overline{\delta }_{j,k,t}^{w} \end{aligned}$$
(A.6u)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial \underline{\beta }_{k,t}^{w}} : - \Psi _{j,k,t}^{w} - \underline{\delta }_{j,k,t}^{w} \end{aligned}$$
(A.6v)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial \overline{\beta }_{t}^{d}} : \overline{D}_{t} + \sigma _{j}^{PD} \cdot \overline{D}_{t} + \Psi _{j,t}^{d} - \overline{\delta }_{j,t}^{d} \end{aligned}$$
(A.6w)
$$\begin{aligned}&\frac{\partial \mathcal {L}^{ESS}_{UL}}{\partial \underline{\beta }_{t}^{d}} : - \Psi _{j,t}^{d} - \underline{\delta }_{j,t}^{d} \end{aligned}$$
(A.6x)

Complementary slackness: Lower-level

figure b

Upper-level

$$\begin{aligned}&\overline{DCH} \cdot \underline{\omega }^{dch}_{l,t} \le \epsilon _{2} \end{aligned}$$
(A.8a)
$$\begin{aligned}&(P^{ESS,max}_{l} - \overline{DCH}) \cdot \overline{\omega }^{dch}_{l,t} \le \epsilon _{2} \end{aligned}$$
(A.8b)
$$\begin{aligned}&\overline{CH} \cdot \underline{\omega }^{ch}_{l,t} \le \epsilon _{2} \end{aligned}$$
(A.8c)
$$\begin{aligned}&(P^{ESS,max}_{l} - \overline{CH}) \cdot \overline{\omega }^{ch}_{l,t} \le \epsilon _{2} \end{aligned}$$
(A.8d)
$$\begin{aligned}&(c^{DCH} - p^{floor}_{l,t}) \cdot \underline{\kappa }^{dch}_{l,t} \le \epsilon _{2} \end{aligned}$$
(A.8e)
$$\begin{aligned}&(p^{cap}_{l,t} - c^{DCH}) \cdot \overline{\kappa }^{dch}_{l,t} \le \epsilon _{2} \end{aligned}$$
(A.8f)
$$\begin{aligned}&(c^{CH} - p^{floor}_{l,t}) \cdot \underline{\kappa }^{ch}_{l,t} \le \epsilon _{2} \end{aligned}$$
(A.8g)
$$\begin{aligned}&(p^{cap}_{l,t} - c^{CH}) \cdot \overline{\kappa }^{ch}_{l,t} \le \epsilon _{2} \end{aligned}$$
(A.8h)
$$\begin{aligned}&SoC_{l,t} \cdot \underline{\omega }^{soc}_{l,t} \le \epsilon _{2} \end{aligned}$$
(A.8i)
$$\begin{aligned}&(E^{ESS,max}_{l} - SoC_{l,t}) \cdot \overline{\omega }^{soc}_{l,t} \le \epsilon _{2} \end{aligned}$$
(A.8j)

Appendix B: Central planner objectives

The formulation of the three different CP objectives are listed below.

Competitive:

$$\begin{aligned}&max\sum _{t \in \mathcal {T}}(d_{t} \cdot p^{cap}) \ - \sum _{i \in \mathcal {L},t \in \mathcal {T}} \big ( g_{i,t} \cdot OPEX^{G}_{i} \big ) \end{aligned}$$
(B.1)

Collusive:

$$\begin{aligned}&max\sum _{t \in \mathcal {T}} \Bigg [ \lambda _{t} \cdot (dch_{t} - ch_{t} + g_{st,t} + w_{st,t}) \ - g_{st,t} \cdot OPEX^{G}_{st} \Bigg ] \end{aligned}$$
(B.2)

Favoring ESS:

$$\begin{aligned}&max\sum _{t \in \mathcal {T}} \lambda _{t} \cdot (dch_{t} - ch_{t}) \end{aligned}$$
(B.3)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolányi, M., Bruninx, K. & Delarue, E. Triggering a variety of Nash-equilibria in oligopolistic electricity markets. Optim Eng (2023). https://doi.org/10.1007/s11081-023-09866-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11081-023-09866-0

Keywords

Navigation