Skip to main content
Log in

Moment-based distributionally robust joint chance constrained optimization for service network design under demand uncertainty

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a distributionally robust joint chance constrained (DRJCC) programming approach to optimize the service network design (SND) problem under demand uncertainty. The distributionally robust method does not need complete distribution information and utilizes restricted historical data knowledge, which is significant in scarce data situations. The joint consideration of chance constraints enables more effective control of event probability, by which network managers can realize the purpose of controlling the overall service level of multi-commodities in a service network. DRJCC optimization can also help decision-makers adjust the network’s conservativeness, robustness, and service rates by setting the probability parameters of the chance constraints. We reformulate the DRJCC model by addressing the corresponding distributionally robust joint chance constraints with the worst-case Conditional Value-at-Risk method and Lagrange duality theory. The model is approximately reformulated as a mixed-integer linear program, which is easier to solve than the mixed-integer semi-definite programming model in existing literature. We also develop two benchmark approaches for comparison: Bonferroni inequality approximation and scenario-based stochastic program. Comparative numerical studies demonstrate the robustness and the validation of the proposed formulations. A case study is conducted to demonstrate the industrial performance of the uncertain SND under the DRJCC formulation. We explore the impact of the confidence level parameter on operational cost and real service level, reveal the general correlation between them. We also extract several risk-averse managerial insights for logistics fleet managers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that we have some misuse of the DRJCC abbreviation for the sake of brevity of expression. Sometimes, DRJCC stands for "distributionally robust joint chance constraint"; sometimes, DRJCC means "distributionally robust joint chance constrainted". Nevertheless, it is easy to distinguish what it stands for in the context.

References

  • Altın A, Yaman H, Pınar MÇ (2011) The robust network loading problem under hose demand uncertainty: formulation, polyhedral analysis, and computations. INFORMS J Comput 23(1):75–89

    Article  MathSciNet  MATH  Google Scholar 

  • Álvarez-Miranda E, Cacchiani V, Lodi A, Parriani T, Schmidt DR (2014) Single-commodity robust network design problem: complexity, instances and heuristic solutions. Eur J Oper Res 238(3):711–723

    Article  MathSciNet  MATH  Google Scholar 

  • An K, Lo HK (2014) Ferry service network design with stochastic demand under user equilibrium flows. Transp Res Part B Methodol 66:70–89

    Article  Google Scholar 

  • Andersson F, Mausser H, Rosen D, Uryasev S (2001) Credit risk optimization with conditional value-at-risk criterion. Math Program 89(2):273–291

    Article  MathSciNet  MATH  Google Scholar 

  • Ayoub J, Poss M (2016) Decomposition for adjustable robust linear optimization subject to uncertainty polytope. CMS 13(2):219–239

    Article  MathSciNet  MATH  Google Scholar 

  • Babaei S, Jiang R, Zhao C (2020) Distributionally robust distribution network configuration under random contingency. IEEE Trans Power Syst 35(5):3332–3341

    Article  Google Scholar 

  • Bai R, Wallace SW, Li J, Chong AYL (2014) Stochastic service network design with rerouting. Transp Res Part B Methodol 60:50–65

    Article  Google Scholar 

  • Basciftci B, Ahmed S, Shen S (2021) Distributionally robust facility location problem under decision-dependent stochastic demand. Eur J Oper Res 292(2):548–561

    Article  MathSciNet  MATH  Google Scholar 

  • Baubaid A, Boland N, Savelsbergh M (2021) The value of limited flexibility in service network designs. Transp Sci 55(1):52–74

    Article  Google Scholar 

  • Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math Program 98(1):49–71

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Doan XV, Natarajan K, Teo CP (2010) Models for minimax stochastic linear optimization problems with risk aversion. Math Oper Res 35(3):580–602

    Article  MathSciNet  MATH  Google Scholar 

  • Bonnans JF, Shapiro A (2013) Perturbation analysis of optimization problems. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Cacchiani V, Jünger M, Liers F, Lodi A, Schmidt DR (2016) Single-commodity robust network design with finite and hose demand sets. Math Program 157(1):297–342

    Article  MathSciNet  MATH  Google Scholar 

  • Calafiore G, Topcu U, El Ghaoui L (2009) Parameter estimation with expected and residual-at-risk criteria. Syst Control Lett 58(1):39–46

    Article  MathSciNet  MATH  Google Scholar 

  • Calafiore GC, Ghaoui LE (2006) On distributionally robust chance-constrained linear programs. J Optim Theory Appl 130(1):1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Campi MC, Garatti S, Prandini M (2009) The scenario approach for systems and control design. Annu Rev Control 33(2):149–157

    Article  Google Scholar 

  • Charnes A, Cooper WW, Symonds GH (1958) Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag Sci 4(3):235–263

    Article  Google Scholar 

  • Chen W, Sim M, Sun J, Teo CP (2010) From CVaR to uncertainty set: implications in joint chance-constrained optimization. Oper Res 58(2):470–485

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X, Sim M, Sun P (2007) A robust optimization perspective on stochastic programming. Oper Res 55(6):1058–1071

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Z, Kuhn D, Wiesemann W (2023) On approximations of data-driven chance constrained programs over Wasserstein balls. Oper Res Lett 51(3):226–233

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng C, Qi M, Zhang Y, Rousseau LM (2018) A two-stage robust approach for the reliable logistics network design problem. Transp Res Part B Methodol 111:185–202

    Article  Google Scholar 

  • Dai Q, Yang J (2020) A distributionally robust chance-constrained approach for modeling demand uncertainty in green port-hinterland transportation network optimization. Symmetry 12(9):1492

    Article  Google Scholar 

  • Delage E, Ye Y (2010) Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper Res 58(3):595–612

    Article  MathSciNet  MATH  Google Scholar 

  • Dong L, Li J, Pu T, Chen N (2019) Distributionally robust optimization model of active distribution network considering uncertainties of source and load. J Modern Power Syst Clean Energy 7(6):1585–1595

    Article  Google Scholar 

  • Duan C, Fang W, Jiang L, Yao L, Liu J (2018) Distributionally robust chance-constrained approximate AC-OPF with Wasserstein metric. IEEE Trans Power Syst 33(5):4924–4936

    Article  Google Scholar 

  • El Ghaoui L, Oustry F, Oks M (2000) Worst-case value-at-risk and robust asset allocation: a semidefinite programming approach. Electronics Research Laboratory, College of Engineering, University of California, Berkeley, CA

  • El Ghaoui L, Oks M, Oustry F (2003) Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper Res 51(4):543–556

    Article  MathSciNet  MATH  Google Scholar 

  • Elbert R, Müller JP, Rentschler J (2020) Tactical network planning and design in multimodal transportation-a systematic literature review. Res Transp Bus Manag 35:100462

    Google Scholar 

  • Fattahi M, Govindan K (2017) Integrated forward/reverse logistics network design under uncertainty with pricing for collection of used products. Ann Oper Res 253(1):193–225

    Article  MathSciNet  MATH  Google Scholar 

  • Fazli-Khalaf M, Khalilpourazari S, Mohammadi M (2019) Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design. Ann Oper Res 283(1):1079–1109

    Article  MathSciNet  Google Scholar 

  • Giliani H, Sahebi H (2021) A multi-objective robust optimization model to design sustainable sugarcane-to-biofuel supply network: the case of study. Biomass Convers Biorefinery 11(6):2521–2542

    Article  Google Scholar 

  • Goldfarb D, Iyengar G (2003) Robust portfolio selection problems. Math Oper Res 28(1):1–38

    Article  MathSciNet  MATH  Google Scholar 

  • Gong H, Zhang Z (2022) Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems. Eur J Oper Res 297(2):496–510

    Article  MathSciNet  MATH  Google Scholar 

  • Govindan K, Fattahi M (2017) Investigating risk and robustness measures for supply chain network design under demand uncertainty: a case study of glass supply chain. Int J Prod Econ 183:680–699

    Article  Google Scholar 

  • Govindan K, Fattahi M, Keyvanshokooh E (2017) Supply chain network design under uncertainty: a comprehensive review and future research directions. Eur J Oper Res 263(1):108–141

    Article  MathSciNet  MATH  Google Scholar 

  • Hewitt M, Crainic TG, Nowak M, Rei W (2019) Scheduled service network design with resource acquisition and management under uncertainty. Transp Res Part B Methodol 128:324–343

    Article  Google Scholar 

  • Hoff A, Lium AG, Løkketangen A, Crainic TG (2010) A metaheuristic for stochastic service network design. J Heuristics 16(5):653–679

    Article  MATH  Google Scholar 

  • Hota AR, Cherukuri A, Lygeros J (2019) Data-driven chance constrained optimization under Wasserstein ambiguity sets. In: 2019 American Control Conference. IEEE, pp 1501–1506

  • Jabbarzadeh A, Fahimnia B, Seuring S (2014) Dynamic supply chain network design for the supply of blood in disasters: a robust model with real world application. Transp Res Part E Logist Transp Rev 70:225–244

    Article  Google Scholar 

  • Jiang N, Xie W (2022) Also-x and also-x+: better convex approximations for chance constrained programs. Oper Res 70(6):3581–3600

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang R, Guan Y (2016) Data-driven chance constrained stochastic program. Math Program 158(1):291–327

    Article  MathSciNet  MATH  Google Scholar 

  • Khatami M, Mahootchi M, Farahani RZ (2015) Benders’ decomposition for concurrent redesign of forward and closed-loop supply chain network with demand and return uncertainties. Transp Res Part E Logist Transp Rev 79:1–21

    Article  Google Scholar 

  • Koster AM, Kutschka M, Raack C (2013) Robust network design: formulations, valid inequalities, and computations. Networks 61(2):128–149

    Article  MathSciNet  MATH  Google Scholar 

  • Lee C, Lee K, Park S (2013) Benders decomposition approach for the robust network design problem with flow bifurcations. Networks 62(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  • Lium AG, Crainic TG, Wallace SW (2009) A study of demand stochasticity in service network design. Transp Sci 43(2):144–157

    Article  Google Scholar 

  • Lo HK, An K, Lin Wh (2013) Ferry service network design under demand uncertainty. Transp Res Part E Logist Transp Rev 59:48–70

    Article  Google Scholar 

  • Ma L, Liu Y, Liu Y (2020) Distributionally robust design for bicycle-sharing closed-loop supply chain network under risk-averse criterion. J Clean Prod 246:118967

    Article  Google Scholar 

  • Mattia S (2013) The robust network loading problem with dynamic routing. Comput Optim Appl 54(3):619–643

    Article  MathSciNet  MATH  Google Scholar 

  • Miller BL, Wagner HM (1965) Chance constrained programming with joint constraints. Oper Res 13(6):930–945

    Article  MATH  Google Scholar 

  • Müller JP, Elbert R, Emde S (2021) Intermodal service network design with stochastic demand and short-term schedule modifications. Comput Ind Eng 159:107514

    Article  Google Scholar 

  • Nakao H, Shen S, Chen Z (2017) Network design in scarce data environment using moment-based distributionally robust optimization. Comput Oper Res 88:44–57

    Article  MathSciNet  MATH  Google Scholar 

  • Nemirovski A, Shapiro A (2006) Convex approximations of chance constrained programs. SIAM J Optim 17(4):969–996

    Article  MathSciNet  MATH  Google Scholar 

  • Nickel S, Saldanha-da Gama F, Ziegler HP (2012) A multi-stage stochastic supply network design problem with financial decisions and risk management. Omega 40(5):511–524

    Article  Google Scholar 

  • Noyan N (2018) Risk-averse stochastic modeling and optimization. In: Recent advances in optimization and modeling of contemporary problems, INFORMS, pp 221–254

  • Pimentel BS, Mateus GR, Almeida FA (2013) Stochastic capacity planning and dynamic network design. Int J Prod Econ 145(1):139–149

    Article  Google Scholar 

  • Popescu I (2007) Robust mean-covariance solutions for stochastic optimization. Oper Res 55(1):98–112

    Article  MathSciNet  MATH  Google Scholar 

  • Prékopa A (1970) On probabilistic constrained programming. In: Proceedings of the Princeton symposium on mathematical programming, Citeseer, vol 113, p 138

  • Qiu R, Wang Y (2016) Supply chain network design under demand uncertainty and supply disruptions: a distributionally robust optimization approach. Sci Program. https://doi.org/10.1155/2016/3848520

    Article  Google Scholar 

  • Rahmani D (2019) Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions. Ann Oper Res 283(1):613–641

    Article  MathSciNet  Google Scholar 

  • Ramezani M, Bashiri M, Tavakkoli-Moghaddam R (2013) A robust design for a closed-loop supply chain network under an uncertain environment. Int J Adv Manuf Technol 66(5):825–843

    Article  MATH  Google Scholar 

  • Rezaei M, Chaharsooghi SK, Kashan AH, Babazadeh R (2020) Optimal design and planning of biodiesel supply chain network: a scenario-based robust optimization approach. Int J Energy Environ Eng 11(1):111–128

    Article  Google Scholar 

  • Sadghiani NS, Torabi S, Sahebjamnia N (2015) Retail supply chain network design under operational and disruption risks. Transp Res Part E Logist Transp Rev 75:95–114

    Article  Google Scholar 

  • Samani MRG, Hosseini-Motlagh SM (2019) An enhanced procedure for managing blood supply chain under disruptions and uncertainties. Ann Oper Res 283(1):1413–1462

    Article  MathSciNet  Google Scholar 

  • Scarf HE (1957) A min-max solution of an inventory problem. Rand Corporation Santa Monica

  • Scutellà MG (2009) On improving optimal oblivious routing. Oper Res Lett 37(3):197–200

    Article  MathSciNet  MATH  Google Scholar 

  • Shen S, You M, Ma Y (2017) Single-commodity stochastic network design under demand and topological uncertainties with insufficient data. Naval Res Logist (NRL) 64(2):154–173

    Article  MathSciNet  MATH  Google Scholar 

  • Sun H, Gao Z, Szeto W, Long J, Zhao F (2014) A distributionally robust joint chance constrained optimization model for the dynamic network design problem under demand uncertainty. Netw Spat Econ 14(3):409–433

    Article  MathSciNet  MATH  Google Scholar 

  • Sun H, Li J, Wang T, Xue Y (2022) A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions. Transp Res Part E: Logist Transp Rev 157:102578

    Article  Google Scholar 

  • Toker O, Ozbay H (1995) On the np-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback. In: Proceedings of 1995 American Control Conference-ACC’95, vol 4. IEEE, pp 2525–2526

  • Wang C, Chen S (2020) A distributionally robust optimization for blood supply network considering disasters. Transp Res Part E Logist Transp Rev 134:101840

    Article  Google Scholar 

  • Wang X, Crainic TG, Wallace SW (2019) Stochastic network design for planning scheduled transportation services: the value of deterministic solutions. INFORMS J Comput 31(1):153–170

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z, Qi M (2020) Robust service network design under demand uncertainty. Transp Sci 54(3):676–689

    Article  Google Scholar 

  • Xie W (2021) On distributionally robust chance constrained programs with Wasserstein distance. Math Program 186(1):115–155

    Article  MathSciNet  MATH  Google Scholar 

  • Xie W, Ahmed S (2017) Distributionally robust chance constrained optimal power flow with renewables: a conic reformulation. IEEE Trans Power Syst 33(2):1860–1867

    Article  Google Scholar 

  • Xie W, Ahmed S (2018) On deterministic reformulations of distributionally robust joint chance constrained optimization problems. SIAM J Optim 28(2):1151–1182

    Article  MathSciNet  MATH  Google Scholar 

  • Xie W, Ahmed S, Jiang R (2019) Optimized bonferroni approximations of distributionally robust joint chance constraints. Math Program pp 1–34

  • Yang L, Xu Y, Gu W, Sun H (2021) Distributionally robust chance-constrained optimal power-gas flow under bidirectional interactions considering uncertain wind power. IEEE Trans Smart Grid 12(2):1722–1735

    Google Scholar 

  • Zhang P, Liu Y, Yang G, Zhang G (2020a) A distributionally robust optimisation model for last mile relief network under mixed transport. Int J Product Res pp 1–25

  • Zhang P, Liu Y, Yang G, Zhang G (2020b) A distributionally robust optimization model for designing humanitarian relief network with resource reallocation. Soft Comput 24(4):2749–2767

    Article  Google Scholar 

  • Zhang P, Liu Y, Yang G, Zhang G (2020c) A multi-objective distributionally robust model for sustainable last mile relief network design problem. Ann Oper Res pp 1–42

  • Zhang X, Liu X (2022) A two-stage robust model for express service network design with surging demand. Eur J Oper Res 299(1):154–167

    Article  MathSciNet  Google Scholar 

  • Zhang Y, Jiang R, Shen S (2018) Ambiguous chance-constrained binary programs under mean-covariance information. SIAM J Optim 28(4):2922–2944

    Article  MathSciNet  MATH  Google Scholar 

  • Zymler S, Kuhn D, Rustem B (2013) Distributionally robust joint chance constraints with second-order moment information. Math Program 137(1):167–198

    Article  MathSciNet  MATH  Google Scholar 

  • Zymler S, Kuhn D, Rustem B (2013) Worst-case value at risk of nonlinear portfolios. Manag Sci 59(1):172–188

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 71772100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyao Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix A: An alternative proof of Lemma 1

In this part, we provide an alternative way to prove Lemma 1 with the aid of the indicator function, Lagrange duality theory, and the method of inequality transformation.

Proof

We rewrite the DRJCC (18) as:

$$\begin{aligned} \sup _{\mathbb {P} \in \mathscr {P}} \mathbb {P}\left\{ \begin{aligned}&\varvec{\xi }^\textsf{T}\varvec{1}_k - \varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1} \ge 0 \quad \forall k \in K \end{aligned} \right\} \le \epsilon . \end{aligned}$$
(84)

Inspired by previous works (El Ghaoui et al. 2003; Calafiore et al. 2009; Zymler et al. 2013b), we can express the left part of DRJCC (84) as:

$$\begin{aligned}&\sup \limits _{\mathbb {P} \in \mathscr {P}} \mathbb {P}\Big \{ \varvec{\xi }^\textsf{T}\varvec{1}_k - \varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1} \ge 0 \quad \forall k \in K \Big \} \nonumber \\ {}&= \left\{ \begin{aligned} \sup \quad&\int _{\mathbb {R}^{|K|}} \mathbb {I}_{\{\mathcal {A}\}}(\varvec{\xi }) d\mathbb {P}(\varvec{\xi }) \\ s.t. \quad&\int _{\mathbb {R}^{|K|}} d\mathbb {P}(\varvec{\xi }) = {1} \\&\int _{\mathbb {R}^{|K|}} \varvec{\xi } d\mathbb {P}(\varvec{\xi }) =\varvec{\hat{\mu }} \\&\int _{\mathbb {R}^{|K|}} (\varvec{\xi }- \varvec{\hat{\mu }})(\varvec{\xi }- \varvec{\hat{\mu }})^\textsf{T} \textrm{d}\mathbb {P}(\varvec{\xi }) = \hat{\varvec{\Gamma }} \\&\mathbb {P} \ge 0 \end{aligned} \right. , \end{aligned}$$
(85)

where \(\mathbb {I}_{\{\mathcal {A}\}}(\varvec{\xi })\) is an indicator function that equals 1 if \(\varvec{\xi } \in \mathcal {A} = \Big \{ \varvec{\xi } {\tiny \quad } |{\tiny \quad } \varvec{\xi }^\textsf{T}\varvec{1}_k - \varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1} \ge 0, \forall k \in K \Big \}\) and 0 otherwise. It can be expressed as a matrix form as follows:

$$\begin{aligned}&\sup \quad \int _{\mathbb {R}^{|K|}} \mathbb {I}_{\{\mathcal {A}\}}(\varvec{\xi }) d\mathbb {P}(\varvec{\xi }) \end{aligned}$$
(86)
$$\begin{aligned} s.t. \quad&\int _{\mathbb {R}^{|K|}} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{d}\mathbb {P}(\varvec{\xi }) = \begin{bmatrix} \hat{\varvec{\Gamma }}+\varvec{\hat{\mu }}\varvec{\hat{\mu }}^\textsf{T} &{} \varvec{\hat{\mu }} \\ \varvec{\hat{\mu }}^\textsf{T} &{} {1} \end{bmatrix} ,\end{aligned}$$
(87)
$$\begin{aligned}&\mathbb {P} \ge 0 . \end{aligned}$$
(88)

Then, we consider the Lagrangian function:

$$\begin{aligned} \mathscr {L}(\mathbb {P}, M) = \int _{\mathbb {R}^{|K|}} \mathbb {I}_{\{\mathcal {A}\}}(\varvec{\xi }) d\mathbb {P}(\varvec{\xi }) + <M, \quad \begin{bmatrix} \hat{\varvec{\Gamma }}+\varvec{\hat{\mu }}\varvec{\hat{\mu }}^\textsf{T} &{} \varvec{\hat{\mu }} \\ \varvec{\hat{\mu }}^\textsf{T} &{} {1} \end{bmatrix} - \int _{\mathbb {R}^{|K|}} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{d}\mathbb {P}(\varvec{\xi })> , \end{aligned}$$
(89)

where \(M \in \mathbb {S}^{(|K|+1) \times (|K|+1)}\) is a symmetric matrix, the matrix of the dual variables of the constraints. The notation \(<.,.>\) denotes the Frobenius product of two matrices. The problem is transformed into the following one:

$$\begin{aligned} \sup \limits _{\mathbb {P} \ge 0} \inf \limits _{M} \mathscr {L}(\mathbb {P}, M) . \end{aligned}$$
(90)

Because \(\begin{bmatrix} \hat{\varvec{\Gamma }}+\varvec{\hat{\mu }}\varvec{\hat{\mu }}^\textsf{T} &{} \varvec{\hat{\mu }} \\ \varvec{\hat{\mu }}^\textsf{T} &{} {1} \end{bmatrix} \succ 0 \), the strong duality holds (Bonnans and Shapiro 2013). Now, we consider the Lagrangian dual of the above problem.

$$\begin{aligned} \inf \limits _{M } \sup \limits _{\mathbb {P} \ge 0} \mathscr {L}(\mathbb {P}, M) . \end{aligned}$$
(91)

For any fixed \(M \in \mathbb {S}^{(|K|+1) \times (|K|+1)}\), the inner problem is:

$$\begin{aligned}&\sup \limits _{\mathbb {P} \ge 0} \mathscr {L}(\mathbb {P}, M) \nonumber \\ {}&= <M, \quad \begin{bmatrix} \hat{\varvec{\Gamma }}+\varvec{\hat{\mu }}\varvec{\hat{\mu }}^\textsf{T} &{} \varvec{\hat{\mu }} \\ \varvec{\hat{\mu }}^\textsf{T} &{} {1} \end{bmatrix}> + \sup \limits _{\mathbb {P} \ge 0} \int _{\mathbb {R}^{|K|}} \Bigg ( \mathbb {I}_{\{\mathcal {A}\}}(\varvec{\xi }) - \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{M} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} \Bigg ) \textrm{d}\mathbb {P}(\varvec{\xi }) \end{aligned}$$
(92)
$$\begin{aligned}&= \left\{ \begin{aligned}&<M, \quad \begin{bmatrix} \hat{\varvec{\Gamma }}+\varvec{\hat{\mu }}\varvec{\hat{\mu }}^\textsf{T} &{} \varvec{\hat{\mu }} \\ \varvec{\hat{\mu }}^\textsf{T} &{} {1} \end{bmatrix}> \quad \text {if}\, \mathbb {I}_{\{\mathcal {A}\}}(\varvec{\xi }) - \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{M} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} \le 0 \quad \forall \varvec{\xi } \in \mathbb {R}^{|\textrm{K}|} \\&+ \infty \quad \qquad \qquad \qquad \quad \qquad \quad \quad \text {otherwise} \end{aligned} \right. . \end{aligned}$$
(93)

Note that \(\mathbb {I}_{\{\mathcal {A}\}}(\varvec{\xi }) \le \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{M} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} \quad (\forall \xi )\) can be divided into two situations (\(\mathbb {I}\) can only be 0 or 1). First, for \(\forall \varvec{\xi } \notin \mathcal {A}\), we have \(\begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{M} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} \ge 0\), which means M is a positive semi-definite matrix, i.e., \(M \in S^{(m+1) \times (m+1)}_+\); second, for \(\varvec{\xi } \in \mathcal {A}\), we have \(\begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{M} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} \ge 1\). For the second situation, we formulate the following model and ensure that its objective is not smaller than one, even in the worst case.

$$\begin{aligned}&\inf \limits _{\varvec{\xi } \in \mathbb {R}^{|K|}} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{M} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} \end{aligned}$$
(94)
$$\begin{aligned} s.t. \quad&\varvec{\xi }^\textsf{T}\varvec{1}_k - \varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1} \ge 0 \quad \forall k \in K . \end{aligned}$$
(95)

Note that:

$$\begin{aligned}&\varvec{\xi }^\textsf{T}\varvec{1}_k - \varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1} \ge 0 \quad (\forall k \in K ) \nonumber \\ \Leftrightarrow&\min \limits _{k \in K} \big \{ \varvec{\xi }^\textsf{T}\varvec{1}_k - \varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1} \big \} \ge 0 . \end{aligned}$$
(96)

We define \( f(\varvec{\xi }) = \min \limits _{\alpha _k \in \varvec{\alpha }} \alpha _k \big \{ \varvec{\xi }^\textsf{T}\varvec{1}_k - \varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1} \big \} \ge 0, \) where \(\alpha _k\) denotes the scaling parameter, \(\alpha _k \in \varvec{\alpha } = \{ \alpha _k \in \mathbb {R} | \alpha _k > 0, k \in K \}\). The scaling parameters used to improve the approximation quality (Chen et al. 2010).

We still apply the Lagrange dual to handle the program (94). The Lagrangian function is:

$$\begin{aligned} \mathscr {L}(\varvec{\xi }, \Upsilon ) = \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{M} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} - \Upsilon \Big ( \min \limits _{\alpha _k \in \varvec{\alpha }} \alpha _k \big \{ \varvec{\xi }^\textsf{T}\varvec{1}_k - \varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1} \big \} \Big ) . \end{aligned}$$
(97)

where \(\Upsilon \) is the dual variable of constraint (96) and \(\Upsilon \ge \varvec{0}\). Because constraint (96) can hold strictly, which means there exists a \(\varvec{\xi }_0\) such that \(f(\varvec{\xi }_0) > 0\), the strong duality holds for the above program based on the Slater condition. That is:

$$\begin{aligned} \inf \limits _{\varvec{\xi } \in \mathbb {R}^{|K|}} \sup \limits _{\Upsilon } \mathscr {L}(\varvec{\xi }, \Upsilon ) =\sup \limits _{\Upsilon } \inf \limits _{\varvec{\xi } \in \mathbb {R}^{|K|}} \mathscr {L}(\varvec{\xi }, \Upsilon ) . \end{aligned}$$
(98)

Now we have:

$$\begin{aligned} \sup \limits _{\Upsilon } \inf \limits _{\varvec{\xi } \in \mathbb {R}^{|K|}} \mathscr {L}(\varvec{\xi }, \Upsilon ) \ge 1 . \end{aligned}$$
(99)

Hencse, there exists a \(\Upsilon \ge 0\) that satisfies \(\inf \limits _{\varvec{\xi } \in \mathbb {R}^{|K|}} \mathscr {L}(\varvec{\xi }, \Upsilon ) \ge 1\); then, for all \(\varvec{\xi }\):

$$\begin{aligned}&\begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{M} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} \ge 1 + \Upsilon \Big ( \min \limits _{\alpha _k \in \varvec{\alpha }} \alpha _k \big \{ \varvec{\xi }^\textsf{T}\varvec{1}_k - \varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1} \big \} \Big ) \quad \forall \varvec{\xi } \in \mathscr {Z} \end{aligned}$$
(100)
$$\begin{aligned} \Leftrightarrow&\begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{M} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} - \Upsilon \Big ( \min \limits _{\alpha _k \in \varvec{\alpha }} \alpha _k \big \{ \varvec{\xi }^\textsf{T}\varvec{1}_k - \varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1} \big \} \Big ) -1 \ge 0 \quad \forall \varvec{\xi } \in \mathscr {Z} \end{aligned}$$
(101)
$$\begin{aligned} \Leftrightarrow&\min \limits _{\varvec{\xi } \in \mathscr {Z}} \max \limits _{\alpha _k \in \varvec{\alpha }} \left\{ \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{M} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} - \Upsilon \Big ( \alpha _k \big \{ \varvec{\xi }^\textsf{T}{1}_k - \varvec{S}^\textsf{T}{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1} \big \} \Big ) -1 \right\} \ge 0 \end{aligned}$$
(102)
$$\begin{aligned} \Leftrightarrow&\max \limits _{\alpha _k \in \varvec{\alpha }} \min \limits _{\varvec{\xi } \in \mathscr {Z}} \left\{ \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{M} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} - \Upsilon \Big ( \alpha _k \big \{ \varvec{\xi }^\textsf{T}\varvec{1}_k - \varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1} \big \} \Big ) -1 \right\} \ge 0 \end{aligned}$$
(103)
$$\begin{aligned} \Leftrightarrow&\min \limits _{\varvec{\xi } \in \mathscr {Z}} \left\{ \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix}^\textsf{T} \textrm{M} \begin{bmatrix} \varvec{\xi } \\ {1} \end{bmatrix} - \Upsilon \Big ( \alpha _k \big \{ \varvec{\xi }^\textsf{T}\varvec{1}_k - \varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1} \big \} \Big ) -1 \right\} \ge 0 \quad \forall k \in K \end{aligned}$$
(104)
$$\begin{aligned} \Leftrightarrow&\textrm{M} - \begin{bmatrix} \varvec{0} &{} \frac{1}{2}\Upsilon \alpha _k\varvec{1}_k \\ \frac{1}{2}\Upsilon \alpha _k\varvec{1}_k ^\textsf{T} &{} 1 + \Upsilon \alpha _k( -\varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1}) \end{bmatrix} \succeq 0 \quad \forall k \in K . \end{aligned}$$
(105)

The equal transfer between (102) and (103) is supported by the classical saddle point theorem.

Consequently, the Lagrangian dual function of the chance constraints follows that:

$$\begin{aligned}&\inf \limits _{M \in \mathbb {S}^{|K|+1}} \sup \limits _{\mathbb {P} \ge 0} \mathscr {L}(\mathbb {P}, M) = \inf \limits _{M, \Upsilon } <M, \quad \begin{bmatrix} \hat{\varvec{\Gamma }}+\varvec{\hat{\mu }}\varvec{\hat{\mu }}^\textsf{T} &{} \varvec{\hat{\mu }} \\ \varvec{\hat{\mu }}^\textsf{T} &{} {1} \end{bmatrix}> \end{aligned}$$
(106)
$$\begin{aligned} s.t. \quad&M - \begin{bmatrix} \varvec{0} &{} \frac{1}{2}\Upsilon \alpha _k\varvec{1}_k \\ \frac{1}{2}\Upsilon \alpha _k\varvec{1}_k ^\textsf{T} &{} 1 + \Upsilon \alpha _k( -\varvec{S}^\textsf{T}\varvec{1}_k + \varvec{y_{No}^{k\tau }}^\textsf{T} \varvec{1} - \varvec{y_{oN}^{k\sigma }} ^\textsf{T} \varvec{1}) \end{bmatrix} \succeq 0 \quad \forall k \in K , \end{aligned}$$
(107)
$$\begin{aligned}&M \succeq 0 , \end{aligned}$$
(108)
$$\begin{aligned}&\Upsilon \ge 0, \end{aligned}$$
(109)

which is an SDP problem. The objective should not be larger than \(\epsilon \) according to the original DRJCC (84).

Because \(\Upsilon \ge 0\) and El Ghaoui et al. (2000) prove that its optimal value is uniformly bounded from below by a positive number, we can divide the matrix inequalities by \(\Upsilon \). For simplicity, we denote \(1/\Upsilon \) by \(\Upsilon \) and \(M/\Upsilon \) by M. We rewrite the constraints and obtain the results of Lemma 1. \(\square \)

1.2 Appendix B: The long tables of numerical stuties

The long tables of numerical studies are displayed here for ease of reading (Tables 9, 10, 11).

Table 9 Confidence level parameter analysis under scenario 3
Table 10 Performance under different scenarios with different confidence level for instance 6\(\times \)12\(\times \)5
Table 11 Operational cost analysis of the case study

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, Y., Wang, M., Liu, H. et al. Moment-based distributionally robust joint chance constrained optimization for service network design under demand uncertainty. Optim Eng (2023). https://doi.org/10.1007/s11081-023-09858-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11081-023-09858-0

Keywords

Navigation