Skip to main content
Log in

A gradient-based approach for optimal actuator design with morphing wings

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a design optimization approach is developed to design the placement and stroke of actuators at a conceptual design phase. This method is applied to the actuator design problem of the morphing leading edge of a high-performance sailplane to achieve predetermined optimal shapes. The centerpiece of this work is the derived analytical sensitivity analysis via direct differentiation to efficiently and effectively find the optimal design. This methodology is illustrated by breaking the solving routine into five blocks: meshing module, actuation stroke module, actuated deformation module, geometric deviation module and geometric constraint module. Although applied here to a morphing wing profile, the methodology and derived equations are general and can be applied to a number of applications of form-variable structures in which the optimal placement of actuators is desired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Note that sans serif \({\textsf{x}}\) stands for a design variable, while serif x is a position.

Abbreviations

\({\underline{\left( \cdot \right) }}\) :

Vector

\(\underline{\underline{\left( \cdot \right) }}\) :

Matrix

\(\underline{{\underline{B}}}_{\textrm{control}}\) :

Boolean matrix for control degrees of freedom

\(d_{\min }\) :

Minimum allowable seperation of neighboring actuators

\({\underline{e}}\) :

Unit vector

\({\textsf{f}}\) :

Optimization objective function

\({\textsf{g}}\) :

Optimization constraint function

\(\underline{{\underline{H}}}\) :

Actuator sensitivity matrix

\(\ell _{\text {el}}\) :

Element length

L :

Arc length

\(L_{\textrm{act}i}\) :

Arc length position of ith actuator

\(n_{\textrm{act}}\) :

Number of actuators

\({n}_N\) :

Number of nodes

u :

Displacement

\({u}_0\) :

Prescribed displacement (Neumann boundary condition)

\({u}_{\textrm{act}}\) :

Calculated actuator stroke, displacement at actuator

\({u}_{\textrm{control}}\) :

Control nodal displacement

\({u}_{\textrm{target}}\) :

Target displacement

\({\textsf{x}}\) :

Optimization design variable

x :

x-position

X :

Optimization design domain

y :

y-position

\(\varDelta \) :

Finite perturbation

\(\delta \) :

Geometric deviation

\(\epsilon _{\textrm{MS}}\) :

Mean square geometric deviation

\(\theta \) :

Rotation about z-axis (out of plane)

\(\nabla \) :

Nabla operator denoting total derivatives w.r.t. \({\textsf{x}}\), i.e. \(\frac{\textrm{d}\left( \cdot \right) }{\textrm{d}{\textsf{x}}}\)

References

  • Achleitner J, Rohde-Brandenburger K, Rogalla von Bieberstein P, Sturm F, Hornung M (2019) Aerodynamic design of a morphing wing sailplane. In: AIAA Aviation 2019 Forum, American Institute of Aeronautics and Astronautics, Reston, Virginia. https://doi.org/10.2514/6.2019-2816

  • Arena M, Concilio A, Pecora R (2019) Aero-servo-elastic design of a morphing wing trailing edge system for enhanced cruise performance. Aerosp Sci Technol 86:215–235. https://doi.org/10.1016/j.ast.2019.01.020

    Article  Google Scholar 

  • Asins CC, Landersheim V, Laveuve D, Adachi S, May M, Wacker JD, Decker J (2021) Analysis and design of a leading edge with morphing capabilities for the wing of a regional aircraft–Gapless chord- and camber-increase for high-lift performance. Appl Sci 11(6):2752. https://doi.org/10.3390/app11062752

    Article  Google Scholar 

  • Baier HJ, Helwig G (1985) Integrated design and analysis approach for large precision structures. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. https://doi.org/10.2514/6.1985-805

  • Baier H, Datashvili L (2011) Active and morphing aerospace structures: a synthesis between advanced materials, structures and mechanisms. Int J Aeronaut Space Sci 12(3):225–240. https://doi.org/10.5139/ijass.2011.12.3.225

    Article  Google Scholar 

  • Barbarino S, Bilgen O, Ajaj RM, Friswell MI, Inman DJ (2011) A review of morphing aircraft. J Intell Mater Syst Struct 22(9):823–877. https://doi.org/10.1177/1045389x11414084

    Article  Google Scholar 

  • Beckers JM (1993) Adaptive optics for astronomy: Principles, performance, and applications. Ann Rev Astron Astrophys 31(1):13–62. https://doi.org/10.1146/annurev.aa.31.090193.000305

    Article  MathSciNet  Google Scholar 

  • Biscani F, Izzo D (2020) A parallel global multiobjective framework for optimization: pagmo. J Open Source Softw 5(53):2338. https://doi.org/10.21105/joss.02338

    Article  Google Scholar 

  • Biscani F, Izzo D, Yam CH (2010) A global optimization toolbox for massively parallel engineering optimisation. In: International Conference on Astrodynamics Tools and Techniques

  • Bletzinger KU, Ramm E (1993) Form finding of shells by structural optimization. Eng Comput 9(1):27–35. https://doi.org/10.1007/bf01198251

    Article  Google Scholar 

  • Bletzinger KU, Wüchner R, Daoud F, Camprubí N (2005) Computational methods for form finding and optimization of shells and membranes. Comput Methods Appl Mech Eng 194(30–33):3438–3452. https://doi.org/10.1016/j.cma.2004.12.026

    Article  MathSciNet  MATH  Google Scholar 

  • Chen GS, Bruno RJ, Salama M (1991) Optimal placement of active/passive members in truss structures using simulated annealing. AIAA J 29(8):1327–1334. https://doi.org/10.2514/3.10739

    Article  Google Scholar 

  • Concilio A, Dimino I, Lecce L, Pecora R (2018) Morphing wing technologies. Elsevier, Amsterdam. https://doi.org/10.1016/c2015-0-01317-x

    Book  Google Scholar 

  • Corana A, Marchesi M, Martini C, Ridella S (1987) Minimizing multimodal functions of continuous variables with the “simulated annealing’’ algorithm. ACM Trans Math Softw 13(3):262–280. https://doi.org/10.1145/29380.29864

    Article  MathSciNet  MATH  Google Scholar 

  • da Rocha-Schmidt L, Datashvili LS, Baier H (2016) A multistep morphing structures design approach applied to different types of applications in aerospace. In: 24th AIAA/AHS Adaptive Structures Conference, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2016-0817

  • Dai YH, Schittkowski K (2008) A sequential quadratic programming algorithm with non-monotone line search. Pac J Optim 4:335–351

    MathSciNet  MATH  Google Scholar 

  • Dannenhoffer J, Haimes R (2017) Using design-parameter sensitivities in adjoint-based design environments. In: 55th AIAA aerospace sciences meeting

  • Datashvili L, Baier H, Wehrle E, Kuhn T, Hoffmann J (2010a) Large shell-membrane space reflectors. In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2010-2504

  • Datashvili L, Baier H, Wei B, Hoffmann J, Wehrle E, Schreider L, Mangenot C, Santiago-Prowald J, Scolamiero L, Angevain JC (2010b) Mechanical investigations of in-space-reconfigurable reflecting surfaces. In: ESA antenna workshop

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):181–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  • Gaspari AD, Cavalieri V, Ricci S (2020) Advanced design of a full-scale active morphing droop nose. Int J Aerosp Eng 2020:1–19. https://doi.org/10.1155/2020/1086518

    Article  Google Scholar 

  • Gufler V, Wehrle E, Achleitner J, Vidoni R (2023) A semi-analytical approach to sensitivity analysis with flexible multibody dynamics of a morphing forward wing section. Multibody SysDyn. https://doi.org/10.1007/s11044-023-09886-9

    Article  MATH  Google Scholar 

  • Gufler V, Wehrle E (2021) EasyBeam: Easy application for structural analysis with beams. https://doi.org/10.5281/ZENODO.5674482

  • Gufler V, Wehrle E, Achleitner J, Vidoni R (2021) Flexible multibody dynamics and sensitivity analysis in the design of a morphing leading edge for high-performance sailplanes. In: ECCOMAS Multibody Dynamics Conference 2021, Budapest University of Technology and Economics. https://doi.org/10.3311/eccomasmbd2021-203

  • Izzo D (2012) PyGMO and PyKEP: Open source tools for massively parallel optimization in astrodynamics (the case of interplanetary trajectory optimization). In: Proceedings of the International Conference on Astrodynamics Tools and Techniques

  • Joo JJ, Sanders B, Johnson T, Frecker MI (2006) Optimal actuator location within a morphing wing scissor mechanism configuration. In: Lindner DK (ed) Smart structures and materials 2006: modeling, signal processing, and control, SPIE. https://doi.org/10.1117/12.658830

  • Kelliher D, Campbell JS (2011) Shape design sensitivities improvement using convected unstructured meshes. Optim Eng 14(1):175–191. https://doi.org/10.1007/s11081-011-9177-8

    Article  MathSciNet  MATH  Google Scholar 

  • Kling U, Seitz A, Bijewitz J, Hermanutz A, da Rocha-Schmidt L, Scarpa F, Majić F, Efraimsson G, O’Reilly CJ (2016) Shape adaptive technology for aircraft engine nacelle inlets. In: Proceedings of the Royal Aeronautical Society’s 5th Aircraft Structural Design Conference, vol 340

  • Lachenal X, Daynes S, Weaver PM (2012) Review of morphing concepts and materials for wind turbine blade applications. Wind Energy 16(2):283–307. https://doi.org/10.1002/we.531

    Article  Google Scholar 

  • Lambe AB, Martins JRRA (2012) Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct Multidiscip Optim 46(2):273–284. https://doi.org/10.1007/s00158-012-0763-y

    Article  MATH  Google Scholar 

  • Li L (1996) A new complexity bound for the least-squares problem. Comput Math Appl 31(12):15–16. https://doi.org/10.1016/0898-1221(96)00072-7

    Article  MathSciNet  MATH  Google Scholar 

  • Moosavian A, Xi F, Hashemi SM (2013) Design and motion control of fully variable morphing wings. J Aircr 50(4):1189–1201. https://doi.org/10.2514/1.c032127

    Article  Google Scholar 

  • Pleissner M, Trapani M, Isikveren A, Hornung M, Ajaj R, Friswell M, Wittmann J, Baier H (2012) Hierarchical approach for conceptual design of morphing devices. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference & 20th AIAA/ASME/AHS Adaptive Structures Conference & 14th AIAA, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2012-1741

  • Puterbaugh M, Beyene A (2011) Parametric dependence of a morphing wind turbine blade on material elasticity. Energy 36(1):466–474. https://doi.org/10.1016/j.energy.2010.10.018

    Article  Google Scholar 

  • Reinisch J, Wehrle E, Achleitner J (2021) Multiresolution topology optimization of large-deformation path-generation compliant mechanisms with stress constraints. Appl Sci 11(6):2479. https://doi.org/10.3390/app11062479

    Article  Google Scholar 

  • Schittkowski K (2013) NLPQLP: A Fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search. User’s guide, version 4.0, Department of Computer Science, University of Bayreuth

  • Senatore G, Duffour P, Winslow P (2019) Synthesis of minimum energy adaptive structures. Struct Multidiscip Optim 60(3):849–877. https://doi.org/10.1007/s00158-019-02224-8

    Article  MathSciNet  Google Scholar 

  • Sinapius M, Monner HP, Kintscher M, Riemenschneider J (2014) DLR’s morphing wing activities within the European network. Procedia IUTAM 10:416–426. https://doi.org/10.1016/j.piutam.2014.01.036

    Article  Google Scholar 

  • Sturm F, Achleitner J, Jocham K, Hornung M (2019) Studies of anisotropic wing shell concepts for a sailplane with a morphing forward wing section. In: AIAA Aviation 2019 Forum, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2019-2817

  • Sturm F, Hornung M (2021) Morphing shell design of a sailplane with a morphing forward wing section. In: XXXV OSTIV congress—congress program and proceedings, TU Braunschweig - Niedersächsisches Forschungszentrum für Luftfahrt

  • Sturm F, Hornung M (2022) Morphing forward wing section skin design for a sailplane considering wing bending. In: Deutsche Gesellschaft für Luft- und Raumfahrt (ed) 33nd Congress of the International Council of the Aeronautical Sciences, Deutsche Gesellschaft für Luft- und Raumfahrt

  • Sturm F, Illenberger G, Techmer D, Hornung M (2021) Static aeroelastic tailoring of a high-aspect-ratio-wing for a sailplane with a forward morphing wing section. In: 32nd Congress of the International Council of the Aeronautical Sciences, Deutsche Gesellschaft für Luft- und Raumfahrt

  • Sturm F, Wehrle E, Hornung M (2023) Simplified modeling of topology-optimized compliant mechanism for multi-fidelity integration in morphing wings. In: AIAA Aviation 2023 Forum, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2023-4022

  • Svanberg K (2007) MMA and GCMMA—two methods for nonlinear optimization. Tech. rep, Optimization and Systems Theory, KTH Royal Institute of Technology

  • Tsai SW, Wu EM (1971) A general theory of strength for anisotropic materials. J Compos Mater 5(1):58–80. https://doi.org/10.1177/002199837100500106

    Article  Google Scholar 

  • Wehrle E (2022). DesOptPy. https://doi.org/10.5281/ZENODO.5908099

  • Wehrle EJ (2015) Design optimization of lightweight space frame structures considering crashworthiness and parameter uncertainty. Lehrstuhl für Leichtbau, Technische Universität München, Dr.-Ing. diss

  • Wei B (2016) Shape morphing skin design with applications on mechanically reconfigurable reflector antennas and sailplane wings. PhD thesis, Lehrstuhl für Leichtbau, Technische Universität München

  • Xiaojun GU, Yang K, Wu M, Zhang Y, Zhu J, Zhang W (2021) Integrated optimization design of smart morphing wing for accurate shape control. Chin J Aeronaut 34(1):135–147. https://doi.org/10.1016/j.cja.2020.08.048

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the project CRC 2017 TN2091, doloMULTI Design of lightweight optimized structures and systems under multidisciplinary considerations through integration of multibody dynamics in a multiphysics framework, funded by the Free University of Bozen-Bolzano. Further support was provided in the framework MILAN, Morphing w ings for sai lpl anes, funded by the German Federal Ministry for Economic Affairs and Climate Action under the grant of the German Federal Aviation Research Program (Luftfahrtforschungsprogramm, LuFo) V-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Wehrle.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The first author developed the theory and carried out all numerical experiments within his role at the Free University of Bozen-Bolzano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wehrle, E., Gufler, V. & Sturm, F. A gradient-based approach for optimal actuator design with morphing wings. Optim Eng (2023). https://doi.org/10.1007/s11081-023-09835-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11081-023-09835-7

Keywords

Navigation