Skip to main content
Log in

A polynomial time infeasible interior-point arc-search algorithm for convex optimization

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes an infeasible interior-point algorithm for the convex optimization problem using arc-search techniques. The proposed algorithm simultaneously selects the centering parameter and the step size, aiming at optimizing the performance in every iteration. Analytic formulas for the arc-search are provided to make the arc-search method very efficient. The convergence of the algorithm is proved and a polynomial bound of the algorithm is established. The preliminary numerical test results indicate that the algorithm is efficient and effective

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If there is no equality constraint in the problem, then the inputs of AE and bE are [ ] and [ ] respectively.

References

  • Agrawal A, Amos B, Barratt S, Boyd S, Diamond S, Kolter Z (2019) Differentiable convex optimization layers. arXiv:1910.12430 [cs.LG]

  • Alizadeh F (1993) Combinatorial optimization with interior-point methods and semi-definite matrices. PhD Thesis, Department of Computer Science, University of Minnesota, Minneapolis

  • Armand P, Gilbert JC, Jan-Jégou S (2000) A feasible BFGS interior point algorithm for solving convex minimization problems. SIAM J Optim 11(1):199–222

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Bubeck S (2015) Convex optimization: algorithms and complexity. Found Trends Mach Learn 8(3–4):231–35

    Article  MATH  Google Scholar 

  • Cao X, Basar T (2021) Decentralized online convex optimization with feedback delays. IEEE Trans Autom Control. https://doi.org/10.1109/TAC.2021.3092562

    Article  MATH  Google Scholar 

  • El-Bakry AS, Tapia RA, Tsuchiya T, Zhang Y (1996) On the formulation and theory of the Newton interior-point method for nonlinear programming. J Optim Theory Appl 89:507–541

    Article  MathSciNet  MATH  Google Scholar 

  • Ekefer J (1953) Sequential minimax search for a maximum. Proc Am Math Soc 4:502–506

    Article  MathSciNet  Google Scholar 

  • Fan X, Yu B (2008) A polynomial path following algorithm for convex programming. Appl Math Comput 196(2):866–878

    MathSciNet  MATH  Google Scholar 

  • Hertog DD (2012) Interior point approach to linear, quadratic and convex programming—algorithms and complexity. Springer, Dordrecht

    Google Scholar 

  • Jarre F (1992) Interior point methods for convex programming. Appl Math Optim 26:287–311

    Article  MathSciNet  MATH  Google Scholar 

  • Kheirfam B (2017) An arc-search infeasible interior-point algorithm for horizontal linear complementarity problem in the \(N^{-\infty }\) neighbourhood of the central path. Int J Comput Math 94:2271–2282

    Article  MathSciNet  MATH  Google Scholar 

  • Kheirfam B (2021) A polynomial-iteration infeasible interior-point algorithm with arc-search for semidefinite optimization. J Sci Comput. https://doi.org/10.1007/s10915-021-01609-6

    Article  MathSciNet  MATH  Google Scholar 

  • Kojima M, Mizuno S, Yoshise A (1989) A polynomial-time algorithm for a class of linear complementarity problem. Math Program 44:1039–1091

    Article  MathSciNet  MATH  Google Scholar 

  • Kortanek KO, Zhu J (1993) A polynomial barrier algorithm for linearly constrained convex programming problems. Math Oper Res 18(1):116–127

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar H (n.d.) Best technique for global optimisation of non-linear concave function with linear constraints? https://www.researchgate.net/post/Best\_technique\_for\_Global\_Optimisation\_of\_Non-linear\_concave\_function\_with\_linear\_constraints

  • Liu X, Lu P, Pan B (2017) Survey of convex optimization for aerospace applications. Astrodynamics 1:23–40

    Article  Google Scholar 

  • Lustig I, Marsten R, Shannon D (1991) Computational experience with a primal–dual interior-point method for linear programming. Linear Algebra Appl 152:191–222

    Article  MathSciNet  MATH  Google Scholar 

  • Lustig I, Marsten R, Shannon D (1992) On implementing Mehrotra’s predictor–corrector interior-point method for linear programming. SIAM J Optim 2:432–449

    Article  MathSciNet  MATH  Google Scholar 

  • Monteiro RDC (1994) A globally convergent primal–dual interior point algorithm for convex programming. Math Program 64:123–147

    Article  MathSciNet  MATH  Google Scholar 

  • Monteiro R, Adler I (1989) Interior path following primal–dual algorithms, Part II: convex quadratic programming. Math Program 44:43–66

    Article  MATH  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New York

    MATH  Google Scholar 

  • Taylor JA (2015) Convex optimization of power systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wright S (1997) Primal–dual interior-point methods. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Yamashita M, Iida E, Yang Y (2021) An infeasible interior-point arc-search algorithm for nonlinear constrained optimization. Numer Algorithms. https://doi.org/10.1007/10.1007/s11075-021-01113-w

    Article  MATH  Google Scholar 

  • Yang Y (2009) Arc-search path-following interior-point algorithm for linear programming. Optimization Online. http://www.optimization-online.org/DB_HTML/2009/08/2375.html

  • Yang Y (2011) A polynomial arc-search interior-point algorithm for convex quadratic programming. Eur J Oper Res 215:25–38

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y (2015) A globally and quadratically convergent algorithm with efficient implementation for unconstrained optimization. Comput Appl Math 34:1219–1236

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y (2017) CurveLP-A MATLAB implementation of an infeasible interior-point algorithm for linear programming. Numer Algorithms 74:967–996

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y (2018) Two computationally efficient polynomial-iteration infeasible interior-point algorithms for linear programming. Numer Algorithms 79:957–992

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y (2020) Arc-search techniques for interior-point methods. CRC Press, Boca Raton

    Book  Google Scholar 

  • Yang Y (2021) An interior-point algorithm for linear programming with optimal selection of centering parameter and step size. J Oper Res Soc China 9(3):659–671

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y, Yamashita M (2018) An arc-search O(nL) infeasible-interior-point algorithm for linear programming. Optim Lett 12:781–798

    Article  MathSciNet  MATH  Google Scholar 

  • Yang X, Liu H, Zhang Y (2017) An arc-search infeasible-interior-point method for symmetric optimization in a wide neighborhood of the central path. Optim Lett 11:135–152

    Article  MathSciNet  MATH  Google Scholar 

  • Ye Y (1987) Interior algorithms for linear, quadratic and linearly constrained convex programming. PhD Dissertation, Department of Engineering-Economic Systems, Stanford University, Stanford

  • Zhang M, Yuan B, Zhou Y, Luo X, Huang Z (2019) A primal–dual interior-point algorithm with arc-search for semidefinite programming. Optim Lett 13:1157–1175

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang M, Huang K, Lv Y (2021) A wide neighborhood arc-search interior-point algorithm for convex quadratic programming with box constraints and linear constraints. Optim Eng. https://doi.org/10.1007/s11081-021-09626-y

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This author thanks the anonymous referees for their very detailed and constructive comments. The quality of the paper has been significantly improved through addressing these thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaguang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Selection of the centering parameter \(\sigma _{k}\) and step size \(\alpha _{k}\)

Appendix: Selection of the centering parameter \(\sigma _{k}\) and step size \(\alpha _{k}\)

Although the method of selecting \(\alpha _{k}\) described in Sects. 3 and 4 assures that the algorithm converges in polynomial iteration, but this selection is very conservative. A better method is to simultaneously select centering parameter \(\sigma _{k}\) and step size \(\alpha _{k}\) to maximize the step size in every iteration. The merit of this holistic strategy is proved in theory (Yang 2021), and has been demonstrated in computational experiments (Yang 2017, 2018). The same strategy is proposed in Step 5 of Algorithm 3.1, but there is no details provided there. In this “Appendix”, we discuss how this strategy is implemented. Although the formulas in this “Appendix” are similar to the ones in Yang (2018), they are different. To avoid the confusion and implementation errors, we would like to list them in this “Appendix”. For the sake of completeness, we also provide the proofs even though they follow the same ideas of Yang (2018).

Let the current iterate be \(\mathbf{v}^{k}=(\mathbf{x}^{k},\mathbf{y}^{k},\mathbf{w}^{k},\mathbf{s}^{k},\mathbf{z}^{k})\), \(({\dot{\mathbf{x}}},{\dot{\mathbf{y}}},{\dot{\mathbf{w}}},{\dot{\mathbf{s}}},{\dot{\mathbf{z}}})\) be computed by solving (13), \((\mathbf{p}_{\mathbf{x}},\mathbf{p}_{\mathbf{y}},\mathbf{p}_{\mathbf{w}},\mathbf{p}_{\mathbf{s}},\mathbf{p}_{\mathbf{z}})\) be computed by solving (17) and \((\mathbf{q}_{\mathbf{x}},\mathbf{q}_{\mathbf{y}},\mathbf{q}_{\mathbf{w}},\mathbf{q}_{\mathbf{s}},\mathbf{q}_{\mathbf{z}})\) be computed by solving (18), \(\phi _{k}\) and \(\psi _{k}\) be computed by using (23) and (24). An intuition based on Propositions 3.1 and 3.3 is that the step size \(\alpha _{k}\) should be chosen as large as possible provided that Condition (C4), (26) and (27) hold. Given \(\mathbf{v}^{k}=(\mathbf{x}^{k},\mathbf{y}^{k},\mathbf{w}^{k},\mathbf{s}^{k},\mathbf{z}^{k})\), \(({\dot{\mathbf{x}}},{\dot{\mathbf{y}}},{\dot{\mathbf{w}}},{\dot{\mathbf{s}}},{\dot{\mathbf{z}}})\), \((\mathbf{p}_{\mathbf{x}},\mathbf{p}_{\mathbf{y}},\mathbf{p}_{\mathbf{w}},\mathbf{p}_{\mathbf{s}},\mathbf{p}_{\mathbf{z}})\), \((\mathbf{q}_{\mathbf{x}},\mathbf{q}_{\mathbf{y}},\mathbf{q}_{\mathbf{w}},\mathbf{q}_{\mathbf{s}},\mathbf{q}_{\mathbf{z}})\), \(\phi _{k}\) and \(\psi _{k}\), similar to the derivation of Yang (2017), the largest \({\tilde{\alpha }}\) that meet conditions (26) and (27) can be expressed as a function of \(\sigma _{k}\). For each \(i \in \lbrace 1,\ldots , n \rbrace\), given \(\sigma\), we can select the largest \(\alpha _{s_{i}}\) such that for any \(\alpha \in [0, \alpha _{s_{i}}]\), the ith inequality of (26) holds, and the largest \(\alpha _{z_{i}}\) such that for any \(\alpha \in [0, \alpha _{z_{i}}]\) the ith inequality of (27) holds. We then define

$$\begin{aligned}&{\alpha ^s}=\displaystyle \min _{i \in \lbrace 1,\ldots , n \rbrace } \lbrace \alpha _{s_{i}}\rbrace , \end{aligned}$$
(A1)
$$\begin{aligned}&{\alpha ^z}=\displaystyle \min _{i \in \lbrace 1,\ldots , n \rbrace } \lbrace \alpha _{z_{i}} \rbrace , \end{aligned}$$
(A2)
$$\begin{aligned}&{{\tilde{\alpha }}}=\min \lbrace \alpha ^{s}, \alpha ^{z} \rbrace , \end{aligned}$$
(A3)

where \(\alpha _{s_{i}}\) and \(\alpha _{z_{i}}\) can be obtained, using a similar argument as in (Yang 2017), in analytical forms represented by \(\phi _{k}\), \(\dot{s}_{i}\), \(\ddot{s}_{i}=p_{s_{i}}\sigma +q_{s_{i}}\), \(\psi _{k}\), \(\dot{z}_{i}\), and \(\ddot{z}_{i}=p_{z_{i}}\sigma +q_{z_{i}}\). First, from (26), we have

$$\begin{aligned} s_{i} +\ddot{s}_{i} - \phi _{k} \ge \dot{s}_{i}\sin (\alpha )+\ddot{s}_{i}\cos (\alpha ). \end{aligned}$$
(A4)

Case 1a (\(\dot{s}_{i}=0\) and \(p_{s_{i}}\sigma +q_{s_{i}} \ne 0\)):

In this case, if \(\ddot{s}_{i} \ge -(s_{i}-\phi _{k})\) and \(\alpha \in \left[ 0, \frac{\pi }{2}\right]\), then \(s_{i}(\alpha ) \ge \phi _{k}\) follows from (26). If \(\ddot{s}_{i} \le -(s_{i}-\phi _{k})\) or \(s_{i} +\ddot{s}_{i} - \phi _{k} \le 0\), to meet (A4), we must have \(\cos (\alpha ) \ge \frac{x_{i} +\ddot{x}_{i}-\phi _{k}}{\ddot{x}_{i}}\), or, \(\alpha \le \cos ^{-1}\left( \frac{x_{i} +\ddot{x}_{i}-\phi _{k}}{\ddot{x}_{i}} \right)\). Therefore,

$$\begin{aligned} \alpha _{s_{i}}(\sigma ) = \left\{ \begin{array}{ll} \frac{\pi }{2} &{} \text{ if }\, s_{i} +(p_{s_{i}}\sigma +q_{s_{i}})-\phi _{k} \ge 0 \\ \cos ^{-1}\left( \frac{s_{i} -\phi _{k} +p_{s_{i}}\sigma +q_{s_{i}}}{p_{s_{i}}\sigma +q_{s_{i}}} \right) &{} \text{ if } \,s_{i} +(p_{s_{i}}\sigma +q_{s_{i}})-\phi _{k} \le 0 . \end{array} \right. \end{aligned}$$
(A5)

Case 2a (\(p_{s_{i}}\sigma +q_{s_{i}}=0\) and \(\dot{s}_{i}\ne 0\)):

In this case, if \(\dot{s}_{i} \le s_{i} -\phi _{k}\) and \(\alpha \in \left[ 0, \frac{\pi }{2}\right]\), then \(s_{i}(\alpha ) \ge \phi _{k}\) follows from (26). If \(\dot{s}_{i} \ge s_{i} -\phi _{k}\), to meet (A4), we must have \(\sin (\alpha ) \le \frac{s_{i} -\phi _{k}}{\dot{s}_{i}}\), or \(\alpha \le \sin ^{-1}\left( \frac{s_{i} -\phi _{k}}{\dot{s}_{i}} \right)\). Therefore,

$$\begin{aligned} \alpha _{s_{i}}(\sigma ) = \left\{ \begin{array}{ll} \frac{\pi }{2} &{} \quad \text{ if } \dot{s}_{i} \le s_{i} -\phi _{k} \\ \sin ^{-1}\left( \frac{s_{i}-\phi _{k} }{\dot{s}_{i}} \right) &{} \quad \text{ if } \dot{s}_{i} \ge s_{i} -\phi _{k} \end{array} \right. \end{aligned}$$
(A6)

Case 3a (\(\dot{s}_{i}>0\) and \(p_{s_{i}}\sigma +q_{s_{i}}>0\)):

Let \(\dot{s}_{i}=\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}\cos (\beta )\), and \(\ddot{s}_{i}=\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}\sin (\beta )\), (A4) can be rewritten as

$$\begin{aligned} s_{i} + \ddot{s}_{i} -\phi _{k} \ge \sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}} \sin (\alpha + \beta ), \end{aligned}$$
(A7)

where

$$\begin{aligned} \beta = \sin ^{-1} \left( \frac{\ddot{s}_{i} }{\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}} \right) = \sin ^{-1}\left( \frac{p_{s_{i}}\sigma +q_{s_{i}} }{\sqrt{\dot{s}_{i}^{2}+(p_{s_{i}}\sigma +q_{s_{i}})^{2}}} \right) . \end{aligned}$$
(A8)

If \(\ddot{s}_{i} + s_{i} -\phi _{k}\ge \sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}\) and \(\alpha \in \left[ 0, \frac{\pi }{2}\right]\), then \(s_{i}(\alpha ) \ge \phi _{k}\) follows from (26). If \(\ddot{s}_{i} + s_{i} -\phi _{k} \le \sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}\), to meet (A7), we must have \(\sin (\alpha + \beta ) \le \frac{s_{i} + \ddot{s}_{i} -\phi _{k}}{\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}}\), or \(\alpha + \beta \le \sin ^{-1}\left( \frac{s_{i} + \ddot{s}_{i} -\phi _{k}}{\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}} \right)\). Therefore,

$$\begin{aligned} \alpha _{s_{i}}(\sigma ) = \left\{ \begin{array}{ll} \frac{\pi }{2} &{} \text{ if }\, s_{i}-\phi _{k} + p_{s_{i}}\sigma +q_{s_{i}} \ge \sqrt{\dot{s}_{i}^{2}+(p_{s_{i}}\sigma +q_{s_{i}})^{2}}, \\ \sin ^{-1}\left( \frac{s_{i} -\phi _{k} + p_{s_{i}}\sigma +q_{s_{i}} }{\sqrt{\dot{s}_{i}^{2}+(p_{s_{i}}\sigma +q_{s_{i}})^{2}}} \right) - \beta &{} \text{ if }\, s_{i} -\phi _{k} + p_{s_{i}}\sigma +q_{s_{i}} \le \sqrt{\dot{s}_{i}^{2}+(p_{s_{i}}\sigma +q_{s_{i}})^{2}}. \end{array} \right. \end{aligned}$$
(A9)

Case 4a (\(\dot{s}_{i}>0\) and \(p_{s_{i}}\sigma +q_{s_{i}}<0\)):

Let \(\dot{s}_{i}=\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}\cos (\beta )\), and \(\ddot{s}_{i}=-\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}\sin (\beta )\), (A4) can be rewritten as

$$\begin{aligned} s_{i} + \ddot{s}_{i} -\phi _{k} \ge \sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}} \sin (\alpha - \beta ), \end{aligned}$$
(A10)

where

$$\begin{aligned} \beta = \sin ^{-1} \left( \frac{-\ddot{s}_{i} }{\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}} \right) = \sin ^{-1}\left( \frac{-(p_{s_{i}}\sigma +q_{s_{i}} )}{\sqrt{\dot{s}_{i}^{2}+(p_{s_{i}}\sigma +q_{s_{i}})^{2}}} \right) . \end{aligned}$$
(A11)

If \(\ddot{s}_{i} + s_{i} -\phi _{k} \ge \sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}\) and \(\alpha \in \left[ 0, \frac{\pi }{2}\right]\), then \(s_{i}(\alpha ) \ge \phi _{k}\) follows from (26). If \(\ddot{s}_{i} + s_{i} -\phi _{k} \le \sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}\), to meet (A10), we must have \(\sin (\alpha - \beta ) \le \frac{s_{i} + \ddot{s}_{i}}{\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}}\), or \(\alpha - \beta \le \sin ^{-1}\left( \frac{s_{i} + \ddot{s}_{i} }{\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}} \right)\). Therefore,

$$\begin{aligned} \alpha _{s_{i}}(\sigma ) = \left\{ \begin{array}{ll} \frac{\pi }{2} &{} \text{ if }\, s_{i} -\phi _{k} + p_{s_{i}}\sigma +q_{s_{i}} \ge \sqrt{\dot{s}_{i}^{2}+(p_{s_{i}}\sigma +q_{s_{i}})^{2}},\\ \sin ^{-1}\left( \frac{s_{i}-\phi _{k} + p_{s_{i}}\sigma +q_{s_{i}} }{\sqrt{\dot{s}_{i}^{2}+(p_{s_{i}}\sigma +q_{s_{i}})^{2}}} \right) + \beta &{} \text{ if }\, s_{i}-\phi _{k} + p_{s_{i}}\sigma +q_{s_{i}} \le \sqrt{\dot{s}_{i}^{2}+(p_{s_{i}}\sigma +q_{s_{i}})^{2}}. \end{array} \right. \end{aligned}$$
(A12)

Case 5a (\(\dot{s}_{i}<0\) and \(p_{s_{i}}\sigma +q_{s_{i}}<0\)):

Let \(\dot{s}_{i}=-\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}\cos (\beta )\), and \(\ddot{s}_{i}=-\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}\sin (\beta )\), (A4) can be rewritten as

$$\begin{aligned} s_{i} + \ddot{s}_{i} -\phi _{k} \ge -\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}} \sin (\alpha +\beta ), \end{aligned}$$
(A13)

where

$$\begin{aligned} \beta = \sin ^{-1} \left( \frac{-\ddot{s}_{i} }{\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}} \right) = \sin ^{-1}\left( \frac{-(p_{s_{i}}\sigma +q_{s_{i}}) }{\sqrt{\dot{s}_{i}^{2}+(p_{s_{i}}\sigma +q_{s_{i}})^{2}}} \right) . \end{aligned}$$
(A14)

If \(\ddot{s}_{i} + s_{i} -\phi _{k} \ge 0\) and \(\alpha \in \left[ 0, \frac{\pi }{2}\right]\), then \(s_{i}(\alpha ) \ge \phi _{k}\) follows from (26). If \(\ddot{s}_{i} + s_{i} -\phi _{k} \le 0\), to meet (A13), we must have \(\sin (\alpha + \beta ) \ge \frac{-(s_{i} + \ddot{s}_{i} -\phi _{k})}{\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}}\), or \(\alpha + \beta \le \pi - \sin ^{-1} \left( \frac{-(s_{i} + \ddot{s}_{i} -\phi _{k})}{\sqrt{\dot{s}_{i}^{2}+\ddot{s}_{i}^{2}}} \right)\). Therefore,

$$\begin{aligned} \alpha _{s_{i}}(\sigma ) = \left\{ \begin{array}{ll} \frac{\pi }{2} &{} \text{ if }\, s_{i}-\phi _{k} + p_{s_{i}}\sigma +q_{s_{i}}\ge 0, \\ \pi - \sin ^{-1} \left( \frac{-(s_{i} -\phi _{k} + p_{s_{i}}\sigma +q_{s_{i}}) }{\sqrt{\dot{s}_{i}^{2}+(p_{s_{i}}\sigma +q_{s_{i}})^{2}}} \right) - \beta &{} \text{ if }\, s_{i}-\phi _{k} + p_{s_{i}}\sigma +q_{s_{i}} \le 0. \end{array} \right. \end{aligned}$$
(A15)

Case 6a (\(\dot{s}_{i}<0\) and \(p_{s_{i}}\sigma +q_{s_{i}}>0\)):

$$\begin{aligned} \alpha _{s_{i}}(\sigma ) = \frac{\pi }{2}. \end{aligned}$$
(A16)

Case 7a (\(\dot{s}_{i}=0\) and \(p_{s_{i}}\sigma +q_{s_{i}}=0\)):

$$\begin{aligned} \alpha _{s_{i}}(\sigma ) = \frac{\pi }{2}. \end{aligned}$$
(A17)

Using the same idea, we can obtain the similar formulas for \(\alpha _{z_{i}}(\sigma )\).

Case 1b (\(\dot{z}_{i}=0\), \(p_{z_{i}}\sigma +q_{z_{i}} \ne 0\)):

$$\begin{aligned} \alpha _{z_{i}}(\sigma ) = \left\{ \begin{array}{ll} \frac{\pi }{2} &{} \text{ if }\, z_{i}-\psi _{k} +p_{z_{i}}\sigma +q_{z_{i}} \ge 0, \\ \cos ^{-1}\left( \frac{z_{i} -\psi _{k} +p_{z_{i}}\sigma +q_{z_{i}}}{p_{z_{i}}\sigma +q_{z_{i}}} \right) &{} \text{ if }\,z_{i}-\psi _{k} +p_{z_{i}}\sigma +q_{z_{i}} \le 0 . \end{array} \right. \end{aligned}$$
(A18)

Case 2b (\(p_{z_{i}}\sigma +q_{z_{i}}=0\) and \(\dot{z}_{i} \ne 0\)):

$$\begin{aligned} \alpha _{z_{i}}(\sigma ) = \left\{ \begin{array}{ll} \frac{\pi }{2} &{} \text{ if }\, \dot{z}_{i} \le z_{i} -\psi _{k}, \\ \sin ^{-1}\left( \frac{z_{i} -\psi _{k} }{\dot{z}_{i}} \right) &{} \text{ if }\, \dot{z}_{i} \ge z_{i} -\psi _{k}. \end{array} \right. \end{aligned}$$
(A19)

Case 3b (\(\dot{z}_{i}>0\) and \(p_{z_{i}}\sigma +q_{z_{i}}>0\)):

Let

$$\begin{aligned}&\beta = \sin ^{-1}\left( \frac{p_{z_{i}}\sigma +q_{z_{i}}}{\sqrt{\dot{z}_{i}^{2}+(p_{z_{i}}\sigma +q_{z_{i}})^{2}}} \right) . \end{aligned}$$
(A20)
$$\begin{aligned}&\alpha _{z_{i}}(\sigma ) = \left\{ \begin{array}{ll} \frac{\pi }{2} &{} \text{ if }\, z_{i} -\psi _{k} + p_{z_{i}}\sigma +q_{z_{i}} \ge \sqrt{\dot{z}_{i}^{2}+(p_{z_{i}}\sigma +q_{z_{i}})^{2}}, \\ \sin ^{-1}\left( \frac{z_{i} -\psi _{k} + p_{z_{i}}\sigma +q_{z_{i}} }{\sqrt{\dot{z}_{i}^{2}+(p_{z_{i}}\sigma +q_{z_{i}})^{2}}} \right) - \beta &{} \text{ if }\, z_{i} -\psi _{k} + p_{z_{i}}\sigma +q_{z_{i}} < \sqrt{\dot{z}_{i}^{2}+(p_{z_{i}}\sigma +q_{z_{i}})^{2}}. \end{array} \right. \end{aligned}$$
(A21)

Case 4b (\(\dot{z}_{i}>0\) and \(p_{z_{i}}\sigma +q_{z_{i}}<0\)):

Let

$$\begin{aligned}&\beta = \sin ^{-1}\left( \frac{-(p_{z_{i}}\sigma +q_{z_{i}})}{\sqrt{\dot{z}_{i}^{2}+(p_{z_{i}}\sigma +q_{z_{i}})^{2}}} \right) . \end{aligned}$$
(A22)
$$\begin{aligned}&\alpha _{z_{i}}(\sigma ) = \left\{ \begin{array}{ll} \frac{\pi }{2} &{} \text{ if }\,z_{i} -\psi _{k} + p_{z_{i}}\sigma +q_{z_{i}} \ge \sqrt{\dot{z}_{i}^{2}+(p_{z_{i}}\sigma +q_{z_{i}})^{2}}, \\ \sin ^{-1}\left( \frac{z_{i} -\psi _{k} + p_{z_{i}}\sigma +q_{z_{i}}}{\sqrt{\dot{z}_{i}^{2}+(p_{z_{i}}\sigma +q_{z_{i}})^{2}}} \right) + \beta &{} \text{ if }\, z_{i}-\psi _{k} + p_{z_{i}}\sigma +q_{z_{i}} \le \sqrt{\dot{z}_{i}^{2}+(p_{z_{i}}\sigma +q_{z_{i}})^{2}}. \end{array} \right. \end{aligned}$$
(A23)

Case 5b (\(\dot{z}_{i}<0\) and \(p_{z_{i}}\sigma +q_{z_{i}}<0\)):

Let

$$\begin{aligned}&\beta = \sin ^{-1}\left( \frac{-(p_{z_{i}}\sigma +q_{z_{i}}) }{\sqrt{\dot{z}_{i}^{2}+(p_{z_{i}}\sigma +q_{z_{i}})^{2}}} \right) . \end{aligned}$$
(A24)
$$\begin{aligned}&\alpha _{z_{i}}(\sigma ) = \left\{ \begin{array}{ll} \frac{\pi }{2} &{} \text{ if }\, z_{i}-\psi _{k} + p_{z_{i}}\sigma +q_{z_{i}} \ge 0 \\ \pi - \sin ^{-1} \left( \frac{-(z_{i} -\psi _{k} + p_{z_{i}}\sigma +q_{z_{i}}) }{\sqrt{\dot{z}_{i}^{2}+(p_{z_{i}}\sigma +q_{z_{i}})^{2}}} \right) - \beta &{} \text{ if }\, z_{i} -\psi _{k} + p_{z_{i}}\sigma +q_{z_{i}} \le 0. \end{array} \right. \end{aligned}$$
(A25)

Case 6b (\(\dot{z}_{i}<0\) and \(p_{z_{i}}\sigma +q_{z_{i}}>0\)):

$$\begin{aligned} \alpha _{z_{i}}(\sigma ) = \frac{\pi }{2}. \end{aligned}$$
(A26)

Case 7b (\(\dot{z}_{i}=0\) and \(p_{z_{i}}\sigma +q_{z_{i}}=0\)):

$$\begin{aligned} \alpha _{z_{i}}(\sigma ) = \frac{\pi }{2}. \end{aligned}$$
(A27)

Using this analytic formulas, our strategy to reduce the duality gap is to simultaneously select \(\alpha _{k}\) and \(\sigma _{k}\) by an iterative method similar to the idea of Yang (2018). This is implemented as follows: in every iteration k, given fixed \(\phi _{k}\), \(\psi _{k}\), \({\dot{\mathbf{s}}}\), \({\dot{\mathbf{z}}}\), \(\mathbf{p}_{\mathbf{s}}\), \(\mathbf{p}_{\mathbf{z}}\), \(\mathbf{q}_{\mathbf{s}}\) and \(\mathbf{q}_{\mathbf{z}}\), several different values of \(\sigma\) are tried to find the best \(\sigma _{k}\) for the maximum of \({\tilde{\alpha }}\). Therefore, we will find a \(\sigma _{k}\) which maximizes the step size \({\tilde{\alpha }}\), i.e.,

$$\begin{aligned} \displaystyle \max _{\sigma \in [\sigma _{\min },\sigma _{\max }]} \displaystyle \min _{i \in \{ 1, \ldots ,n\} } \{ \alpha _{s_{i}}(\sigma ), \alpha _{z_{i}}(\sigma ) \}, \end{aligned}$$
(A28)

where \(0 \le \sigma _{\min } < \sigma _{\max } \le 1\), \(\alpha _{s_{i}}(\sigma )\) and \(\alpha _{z_{i}}(\sigma )\) are calculated using (A5)–(A27) for \(\sigma \in [\sigma _{\min },\sigma _{\max }]\). Problem (A28) has no regularity conditions involving derivatives. Golden section search for variable \(\sigma\) (Ekefer 1953) seems to be an appropriate method for solving this problem. Noting the fact from (26) that \(\alpha _{s_{i}}({\sigma })\) is a monotonic increasing function of \(\sigma\) if \(p_{s_{i}}>0\) and \(\alpha _{s_{i}}({\sigma })\) is a monotonic decreasing function of \(\sigma\) if \(p_{s_{i}}<0\) [and similar properties hold for \(\alpha _{z_{i}}(\sigma )\)], we can use the condition

$$ \begin{aligned} \min \left\{ \displaystyle \min _{\{i \in p_{s_{i}}<0\}} \alpha _{s_{i}}(\sigma ), \displaystyle \min _{\{i \in p_{z_{i}}<0\}} \alpha _{z_{i}}(\sigma )\right\}> \min \left\{ \displaystyle \min _{\{i \in p_{s_{i}}>0\}} \alpha _{s_{i}}(\sigma ), \displaystyle \min _{\{i \in p_{z_{i}}>0\}} \alpha _{z_{i}}(\sigma ) \right\} , \end{aligned} $$
(A29)

and the following bisection search for variable \(\sigma\) to solve (A28).

Algorithm 6.1

(bisection search devised for solving (A28))

Data: \((\dot{x},\dot{s})\), \((p_{x}, p_{s} )\), \((q_{x}, q_{s})\), \((x^{k},s^{k})\), \(\phi _{k}\), and \(\psi _{k}\).

Parameter: \(\epsilon \in (0,1)\), \(\sigma _{lb}=\sigma _{\min }\), \(\sigma _{ub}=\sigma _{\max } \le 1\).

for iteration \(k=0,1,2,\ldots\)

Step 0::

If \(\sigma _{ub}-\sigma _{lb} \le \epsilon\), set \(\alpha =\displaystyle \min _{i \in \{ 1, \ldots ,n\} } \{ \alpha _{x_{i}}(\sigma ), \alpha _{s_{i}}(\sigma ) \}\), stop.

Step 1::

Set \(\sigma =\sigma _{lb}+0.5(\sigma _{ub}-\sigma _{lb})\).

Step 2::

Calculate \(\alpha _{x_{i}}(\sigma )\) and \(\alpha _{s_{i}}(\sigma )\) using (A5)–(A27).

Step 3::

If (A29) holds, set \(\sigma _{lb}=\sigma\), otherwise, set \(\sigma _{ub}=\sigma\).

Step 4::

Set \(k+1 \rightarrow k\). Go back to Step 1.

end (for) \(\square\)

This algorithm reduces interval length by 0.5 in every iteration while golden section method reduces interval length by 0.618. The bisection is more efficient.

In view of Proposition 3.3, if \(({\dot{\mathbf{s}}}^{\text{T}} {\mathbf{p}}_{\mathbf{z}}+{\dot{\mathbf{z}}}^{\text{T}} {\mathbf{p}}_{\mathbf{s}}) < 0\), to minimize \(\mu _{k+1}\), we should select \(\sigma _{k} =0\). Therefore, Problem (A28) is reduced to solve a much simpler problem

$$\begin{aligned} {\tilde{\alpha }}= \min _{\alpha } b_u(\alpha ). \end{aligned}$$
(A30)

This is a one-dimensional unconstrained optimization problem that can be solved by many existing methods, such as golden section method. Given \({\tilde{\alpha }}\), we still need to find the largest \(\alpha _{k} \in (0, {\tilde{\alpha }}]\) such that Condition (C4) holds. We summarize the algorithm described above as follows:

Algorithm 6.2

(bisection search devised for Step 5 of Algorithm 3.1) )

Data: \(({\dot{\mathbf{x}}},{\dot{\mathbf{s}}})\), \((\mathbf{p}_{\mathbf{x}}, \mathbf{p}_{\mathbf{s}} )\), \((\mathbf{q}_{\mathbf{x}}, \mathbf{q}_{\mathbf{s}})\), \((\mathbf{x}^{k},\mathbf{s}^{k})\), \(\phi _{k}\), and \(\psi _{k}\).

Parameter: \(\epsilon \in (0,1)\).

Step 1::

If \(({\dot{\mathbf{s}}}^{\text{T}} {\mathbf{p}}_{\mathbf{z}}+{\dot{\mathbf{z}}}^{\text{T}} {\mathbf{p}}_{\mathbf{s}}) < 0\), set \(\sigma _{k} =0\), solve (A30) to get \({\tilde{\alpha }}\).

Step 2::

Otherwise, call Algorithm 6.1 to get \({\tilde{\alpha }}\).

Step 3::

Find the largest \(\alpha _{k} \in (0, {\tilde{\alpha }}]\) such that Condition (C4) holds. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y. A polynomial time infeasible interior-point arc-search algorithm for convex optimization. Optim Eng 24, 885–914 (2023). https://doi.org/10.1007/s11081-022-09712-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-022-09712-9

Keywords

Mathematics Subject Classification

Navigation