Skip to main content
Log in

A solution method for heterogeneity involving present bias

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

When solving for optimal strategies, a financial engineer needs to take into consideration of preferences heterogeneities, which involve not only present bias, but also future-focused preferences. We provide a reusable tool (i.e. algorithm) for explicitly solving optimal strategy in the presence of preferences variation over time, decision-makers and goods. In this framework, a new discount function identifies many hitherto unknown preference heterogeneities, a non-standard HJB yields sophisticated solution, a behavior equation produces naive and precommitted solutions. An application of the framework shows that a decision-maker can be neither impatient nor patient, and that sophisticated paradigm engenders immediate gratification in earlier phases of life cycle and self-control in later phases of life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arrow KJ et al (2014) Should governments use a declining discount rate in project analysis. Rev Environ Econ Policy 8:145–163

    Article  Google Scholar 

  • Becker RA (1980) On the long-run steady state in a simple dynamic model of equilibrium with heterogeneous households. Q J Econ 95:375–382

    Article  Google Scholar 

  • Bernheim D, Laibson D (2019) Intertemporal choice. In: Handbook of behavioral economics foundations and applications. Elsevier, North Holland

  • Caraballo SC, Fernandez RA (2019) A performance-based design framework for enhancing decision-making at the conceptual phase of a motorcycle rear suspension development. Optim Eng. https://doi.org/10.1007/s11081-019-09475-w

    Article  Google Scholar 

  • de-Paz A, Marín-Solano J, Navas J, Roch O (2014) Consumption, investment and life insurance strategies with heterogeneous discounting. Insur Math Econ 54:66–75

    Article  MathSciNet  Google Scholar 

  • Drugeon J, Wigniolle B (2016) On time-consistent policy rules for heterogeneous discounting programs. J Math Econ 63:174–187

    Article  MathSciNet  Google Scholar 

  • Ekeland I, Lazrak A (2010) The golden rule when preferences are time inconsistent. Math Financ Econ 4:29–55

    Article  MathSciNet  Google Scholar 

  • Ekeland I, Pirvu TA (2008) Investment and consumption without commitment. Math Financ Econ 2:57–86

    Article  MathSciNet  Google Scholar 

  • Ekeland I, Mbodji O, Pirvu TA (2012) Time-consistent portfolio management. SIAM J Financ Math 3:1–32

    Article  MathSciNet  Google Scholar 

  • Feigenbaum JA (2016) Equivalent representations of non-exponential discounting models. J Math Econ 66:58–71

    Article  MathSciNet  Google Scholar 

  • Harris C, Laibson D (2013) Instantaneous gratification. Q J Econ 128:205–241

    Article  Google Scholar 

  • Karp LS (2007) Non-constant discounting in continuous time. J Econ Theory 132:557–568

    Article  MathSciNet  Google Scholar 

  • Kılınç MR, Sahinidis NV (2018) Exploiting integrality in the global optimization of mixed-integer nonlinear programming problems with baron. Optim Methods Softw 33:540–562

    Article  MathSciNet  Google Scholar 

  • Kloeden PE, Platen E (1995) Numerical solution of stochastic differential equation. Springer, Berlin

    MATH  Google Scholar 

  • Liu J, Ploskas N, Sahinidis NV (2019) Tuning baron using derivative-free optimization algorithms. J Glob Optim 74:611–637

    Article  MathSciNet  Google Scholar 

  • Marín-Solano J, Navas J (2009) Non-constant discounting in finite horizon: the free terminal time case. J Econ Dyn Control 33:666–675

    Article  MathSciNet  Google Scholar 

  • Marín-Solano J, Navas J (2010) Consumption and portfolio rules for time-inconsistent investors. Eur J Oper Res 201:860–872

    Article  MathSciNet  Google Scholar 

  • Marín-Solano J, Patxot C (2012) Heterogeneous discounting in economic problems. Optimal Control Appl Methods 33:32–50

    Article  MathSciNet  Google Scholar 

  • Marín-Solano J, Navas J, Roch O (2013) Non-constant discounting and consumption, portfolio and life insurance rules. Econ Lett 119:186–190

    Article  MathSciNet  Google Scholar 

  • Miller CW, Yang I (2017) Nonlinear pde approach to time-inconsistent optimal stopping. SIAM J Control Optim 55:557–573

    Article  MathSciNet  Google Scholar 

  • Myerson J, Green L (1995) Discounting of delayed rewards: models of individual choice. J Exp Anal Behav 64:263–276

    Article  Google Scholar 

  • Ngo H, Taguchi D (2017) Strong convergence for the Euler–Maruyama approximation of stochastic differential equations with discontinuous coefficients. Stat Probab Lett 125:55–63

    Article  MathSciNet  Google Scholar 

  • Ni Y-H, Li X, Zhang J-F, Krstic M (2019) Mixed equilibrium solution of time-inconsistent stochastic linear-quadratic problem. SIAM J Control Optim 57:533–569

    Article  MathSciNet  Google Scholar 

  • O’Donoghue T, Rabin M (2015) Present bias: lessons learned and to be learned. Am Econ Rev 105:273–279

    Article  Google Scholar 

  • Peng L, Hager WW (2017) Non-constant quasi-hyperbolic discounting. Econ Comput Econ Cybern Stud Res 2:145–164

    Google Scholar 

  • Peng L, Kloeden P (2019) Impulsivity and heterogeneity. Econ Comput Econ Cybern Stud Res 4:313–324

    Google Scholar 

  • Pliska SR, Ye J (2007) Optimal life insurance purchase and consumption/investment under uncertain lifetime. J Bank Finance 31:1307–1319

    Article  Google Scholar 

  • Ramsey FP (1928) A mathematical theory of saving. Econ J 38:543–559

    Article  Google Scholar 

  • Sahinidis NV (1996) Baron: a general purpose global optimization software package. J Glob Optim 8:201–205

    Article  MathSciNet  Google Scholar 

  • Shen Y, Wei J (2016) Optimal investment–consumption–insurance with random parameters. Scand Actuar J 2016:37–62

    Article  MathSciNet  Google Scholar 

  • Shreve SE (2004) Stochastic calculus for finance II. Springer, Berlin

    Book  Google Scholar 

  • Yang C, Cheng LL (2013) Optimal guidance law in quantum mechanics. Ann Phys 338:167–185

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the Editor, Professor Nikolaos Sahinidis, and anonymous referees for their insightful suggestions, which enhance this paper. Funding for this research was provided by China Scholarship Council under CSC Number 201808525077. This work was also supported by Scientists Recruitment Program of Guizhoiu University (resp. School of management, Guizhou University) under Agreement Number 2017-008 (resp. 17GLR007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Theorem 4.1

  1. 1.

    Time is partitioned into N intervals. The grid size is specified as equidistant \(\Delta {t_j} = t_{j + 1} - t_j = \varepsilon = \dfrac{T}{N} \rightarrow 0^ +\) such that all subintervals shrink to zero in the limit as \(N \rightarrow \infty\) or \(\varepsilon \rightarrow 0^ +\). We can find \(t_j = j \times \Delta t = j\varepsilon\) such that \({\hat{X}}_k = {\hat{X}} ( k\varepsilon ), ~{\hat{u}}_k = {\hat{u}} (k\varepsilon ),~~ {\hat{V}}_j \buildrel \Delta \over = {\hat{V}}({\hat{x}},j\varepsilon ), ~~ {\hat{V}}_N \buildrel \Delta \over = {\hat{V}}({\hat{X}}_N,N\varepsilon ) ={\hat{F}}( {\hat{X}}_N, N\varepsilon )\). For \(j=0,\ldots ,N-1\) and \(k=j,\ldots ,N-1\), the original problem (67) becomes

    $$\begin{aligned}{\hat{V}}_j &= \inf _{{\hat{u}} } {\mathbb {E}}^{ {\hat{x}}}_{j\varepsilon } \left( L({\hat{X}}_j,{\hat{u}}_j,j\varepsilon ) \varepsilon \nonumber \right. \\&\quad \left. + \sum \limits _{i = 1}^{N - j - 1} {\mathbb {D}} ( {0,i\varepsilon }) L({\hat{X}}_{i + j}, {\hat{u}}_{i + j }, (i + j)\varepsilon )\varepsilon +e^{ - (N - j)\rho \varepsilon } {\hat{V}}_N \right) \end{aligned}$$
    (15)

    subject to

    $$\begin{aligned} \left\{ \begin{aligned} {\hat{X}}_{k + 1}&= {\hat{X}}_k + {\hat{\eta }} ( {\hat{X}}_k, {\hat{u}}_k, k\varepsilon ) \varepsilon + \sum \limits _b^m {\hat{\sigma }} ^b ( {\hat{X}}_k, {\hat{u}}_k, k\varepsilon ) (z_{k + 1}^b - z_k^b)\\ {\hat{X}}_j&= {\hat{x}}\\ \end{aligned} \right. \end{aligned}$$
    (16)

    where \({\mathbb {E}}^{ {\hat{x}}}_{j\varepsilon }= {\mathbb {E}} \left[ \cdot \mid {\hat{X}}_j={\hat{x}} \right]\) is the conditional expectation. Our choice of functions guarantees (cf. Kloeden and Platen 1995; Ngo and Taguchi 2017) that Eq. (15) (resp. Eq. 16) converges to Eq. (6) (resp. Eq. 7).

  2. 2.

    On one hand, multiplication of Eq. (15) by \(e^{ - (N - j-1)\rho \varepsilon }\) implies

    $$\begin{aligned} \begin{array}{l} e^{ - (N - j - 1)\rho \varepsilon } e^{ - (N - j )\rho \varepsilon } {\hat{V}}_N = \\ \inf_{\hat u } {\mathbb {E}}^{ {\hat{x}}}_{j\varepsilon } \left( \begin{array}{l} e^{ - (N - j-1)\rho \varepsilon } {\hat{V}}_j - e^{ - (N - j-1)\rho \varepsilon } L({\hat{X}}_j,{\hat{u}}_j,j\varepsilon ) \varepsilon +\\ \sum \limits _{i = 1}^{N - j - 1} e^{ - (N - j-1)\rho \varepsilon } {\mathbb {D}} ( {0,i\varepsilon })L \Big ({\hat{X}}_{i + j}, {\hat{u}}_{i + j }, (i + j) \varepsilon \Big )\varepsilon \\ \end{array} \right) \end{array} \end{aligned}$$
    (17)

    On the other hand, Eq. (15) implies

    $$\begin{aligned}e^{ - (N - j-1)\rho \varepsilon } {\hat{V}}_N &= \inf _{{\hat{u}} } {\mathbb {E}}^{ {\hat{x}}}_{(j+1)\varepsilon } \left( {\hat{V}}_{j+1} \nonumber \right. \\&\quad \left. - \sum \limits _{i = 1}^{N - j - 1} {\mathbb {D}} ( {0,(i-1)\varepsilon }) L \Big ({\hat{X}}_{i + j}, {\hat{u}}_{i + j }, (i + j)\varepsilon \Big )\varepsilon \right) \end{aligned}$$
    (18)
  3. 3.

    Inserting Eq. (18) into Eq. (17)

    $$\begin{aligned} {\hat{V}}_{j+1} -{\hat{V}}_j=\inf _{{\hat{u}} } {\mathbb {E}}^{ {\hat{x}}}_{j\varepsilon } \left[ {{\hat{K}}({\hat{x}},j\varepsilon )+ \rho }{\hat{V}}_j \varepsilon - L ( {\hat{X}}_j, {{\hat{u}}}_j, j\varepsilon )\varepsilon + o(\varepsilon ) \right] \end{aligned}$$
    (19)

    where

    $$\begin{aligned}{\hat{K}}({\hat{x}},j\varepsilon ) &= \left\{ \sum \limits _{i = 1}^{N - j - 1} L \Big ({\hat{X}}_{i + j}, {\hat{u}}_{i + j }, (i + j)\varepsilon \Big ) \nonumber \right. \\&\left. \quad \Big [ {\mathbb {D}} ( {0,(i-1)\varepsilon }) (1 - \rho \varepsilon ) - {\mathbb {D}} ( {0,i\varepsilon }) \Big ] \right\} \varepsilon \end{aligned}$$
    (20)
  4. 4.

    By the SQH algorithm (e.g. Harris and Laibson 2013) and the discretizing algorithm (e.g. Karp 2007), Eq. (20) can be rewritten as

    $$\begin{aligned}{\hat{K}}({\hat{x}},j\varepsilon ) &= \left\{ \sum \limits _{i = 1}^{N - j - 1} \Big [ ( 1 - \beta ) \lambda e^{ - \lambda i\varepsilon } \varepsilon + (r - \rho )\varepsilon \Big ] e^{ - ri\varepsilon } \nonumber \right. \\&\quad \left. L \Big ({\hat{X}}_{i + j}, {\hat{u}}_{i + j }, (i + j)\varepsilon \Big ) \right\} \varepsilon \end{aligned}$$
    (21)

    LHS of Eq. (19) can be rewritten as (e.g. Yang and Cheng (2013), equation 2.16),

    $$\begin{aligned} \begin{aligned}V ( x (t+\varepsilon ), t+\varepsilon ) - V(x,t) &= \frac{\partial V(x,t) }{\partial t}\varepsilon + \nabla _x V(x,t) \cdot \eta ( x,u,t) \varepsilon \\&\quad + \frac{1}{2} trace \Big ( \sigma ^{\mathrm{T}} (x,u,t) \cdot \sigma (x,u,t) \cdot \nabla _{xx} V(x,t) \Big ) \varepsilon \\&\quad + \nabla _x V(x,t) \cdot \sigma (x,u,t) \cdot \Big [ z(t+\varepsilon ) -z(t) \Big ] + o(\varepsilon ) \end{aligned} \end{aligned}$$
    (22)
  5. 5.

    Inserting (2122) into (19)

    $$\begin{aligned} \begin{aligned}&\frac{\partial V(x,t) }{\partial t}\varepsilon + \nabla _x V(x,t) \cdot \eta ( x,u,t) \varepsilon \\&\qquad + \frac{1}{2} \Big ( \sigma ^{\mathrm{T}} (x,u,t) \cdot \sigma (x,u,t) \cdot \nabla _{xx} V(x,t) \Big ) \varepsilon \\&\qquad + \nabla _{x} V(x,t) \cdot \sigma (x,u,t) \cdot \Big [z(t+\varepsilon ) -z(t)\Big ] +o(\varepsilon )\\&\quad = \rho {\hat{V}}_j \varepsilon - L ( {\hat{X}}_j, {{\hat{u}}}_j, j\varepsilon )\varepsilon + o(\varepsilon )\\&\qquad +\sum \limits _{i = 1}^{N - j - 1} \Big [ ( 1 - \beta ) \lambda e^{ - \lambda i\varepsilon } \varepsilon \\&\qquad + (r - \rho )\varepsilon \Big ] e^{ - ri\varepsilon } L \Big ({\hat{X}}_{i + j}, {\hat{u}}_{i + j }, (i + j)\varepsilon \Big )\varepsilon \end{aligned} \end{aligned}$$
    (23)

    Dividing by \(\varepsilon\) and taking the limit \(\varepsilon \rightarrow 0\) complete the proof.

\(\square\)

Appendix 2: Proof of Remark (4.2)

This appendix will explain how the SHQH discount function includes other discount functions as its special cases.

1.1 Reduction to exponential discount function and its HJB

The exponential discount function at time t used to evaluate a payoff at time s is

$$\begin{aligned} e^{-r (s - t)}, ~~~~~~~~~s \in [t, \infty ) \end{aligned}$$
(24)

The stochastic optimal control problem under the exponential discounting (24) is

$$\begin{aligned} V(x,t)= \inf _{u\in {\mathcal {U}} } {\mathbb {E}} ^x_t \left( \int \limits _t^T { e^{-r (s - t)} L \Big ( {X(s),u(s),s} \Big ) ds} + e^{-r (T - t)} F \Big (X(T),T \Big ) \right) \end{aligned}$$

subject to the constraint (7).

The HJB associated with the exponential discounting (24) is

$$\begin{aligned} \begin{aligned}r V(x,t) - \frac{\partial V(x,t) }{\partial t} &= \inf _{u\in {\mathcal {U}} } \left[ L(x,u,t) + \Big \langle \eta (x,u,t), \nabla _x V(x,t) \Big \rangle \right. \\&\quad \left. + \frac{1}{2} trace \Big ( \sigma ^{\mathrm{T}} (x,u,t) \cdot \sigma (x,u,t) \cdot \nabla _{xx} V(x,t)\Big ) \right] \end{aligned} \end{aligned}$$
(25)

When

$$\begin{aligned} \left\{ \begin{aligned}&\rho =r \\&\beta =1 ~~ or~~ \lambda = 0 \end{aligned} \right. \end{aligned}$$

in Eq. (6), the SHQH discount function (6) and its HJB (8) reduce to the exponential discount function (24) and its HJB (25).

1.2 Reduction to the HG discount function and its HJB

The heterogeneous (HG) discount function (e.g. Marín-Solano and Patxot 2012; Marín-Solano et al. 2013; de-Paz et al. 2014) at time t used to evaluate a payoff at time s is

$$\begin{aligned} d^{HG}(t,s) = {\left\{ \begin{array}{ll} e^{-r (s - t)}, &{} s <T \\ e^{-\rho (s - t)}, &{} s=T \end{array}\right. } \end{aligned}$$
(26)

The stochastic optimal control problem under the HG discounting is

$$\begin{aligned} V(x,t)= \inf _{u\in {\mathcal {U}} } {\mathbb {E}} ^x_t \left( \int \limits _t^T { d^{HG}(t,s) L \Big ( {X(s),u(s),s} \Big ) ds} + d^{HG}(t,T) F \Big (X(T),T \Big ) \right) \end{aligned}$$

subject to the constraint (7).

The HJB associated with the HG discount function (26) is

$$\begin{aligned} \begin{aligned}&\rho V(x,t) + K(x,t) - \frac{\partial V(x,t) }{\partial t}=\\&\quad \inf _{u\in {\mathcal {U}} } \left[ L(x,u,t) + \eta (x,u,t)\cdot \nabla _x V(x,t) + \frac{1}{2} tr \Big ( \sigma ^{\mathrm{T}} (x,u,t) \cdot \sigma (x,u,t) \cdot \nabla _{xx} V(x,t)\Big ) \right] \end{aligned} \end{aligned}$$
(27)

where

$$\begin{aligned} K(x,t) = {\mathbb {E}}^x_t \left( \int \limits _t^T { e^{-r(s-t)}( r -\rho ) L ( u^*(s) )ds} \right) \end{aligned}$$

When

$$\begin{aligned} \beta =1 ~~ or~~ \lambda = 0 \end{aligned}$$

in Eq. (6), the SHQH discount function (6) and its HJB (8) reduce to the HG discount function (26) and its HJB (27). \(\square\)

1.3 Reduction to the SQH discount function and its HJB

The SQH discount function (e.g. Harris and Laibson 2013) at time t used to evaluate a payoff at time s is

$$\begin{aligned} {\mathbb {D}}(t,s) = {\left\{ \begin{array}{ll} e^{-r (s - t)} , &{} s \in [ t,t + \varsigma ) \\ \beta e^{-r (s - t)}, &{} s \in [ t + \varsigma ,\infty ) \end{array}\right. } \end{aligned}$$
(28)

The stochastic optimal control problem under the SQH discounting (28) is

$$\begin{aligned} V(x,t)= \inf _{u\in {\mathcal {U}} } {\mathbb {E}} ^x_t \left( \int \limits _t^T { {\mathbb {D}} (t,s) L \Big ( {X(s),u(s),s} \Big ) ds} + {\mathbb {D}} (t,T) F \Big (X(T),T \Big ) \right) \end{aligned}$$

subject to the constraint (7).

The HJB associated with the SQH discount function (SQH-HJB) is

$$\begin{aligned} \begin{aligned}&rV(x,t) + K(x,t) - \frac{\partial V(x,t) }{\partial t} \\&\quad =\inf _{u\in {\mathcal {U}} } \left[ L(x,u,t) + \eta (x,u,t)\cdot \nabla _x V(x,t)+ \frac{1}{2} tr \Big ( \sigma ^{\mathrm{T}} (x,u,t) \cdot \sigma (x,u,t) \cdot \nabla _{xx} V(x,t)\Big ) \right] \end{aligned} \end{aligned}$$
(29)

where

$$\begin{aligned} K(x,t) = {\mathbb {E}}^x_t \left( \int \limits _t^T e^{-r (s - t)} \lambda ( 1 - \beta ) e^{ - \lambda (s - t)} L ( u^*(s) )ds \right) \end{aligned}$$

\(\square\)

When

$$\begin{aligned} \rho = r \end{aligned}$$

in Eq. (6), the SHQH discount function (6) and its HJB (8) reduce to the SQH discount function (28) and its HJB (29).

Appendix 3: Proof of Lemma 5.1

Proof of Lemma 5.1

Time is partitioned into N intervals. The grid size is specified as equidistant \(\Delta {t_j} = t_{j + 1} - t_j = \varepsilon = \dfrac{T}{N} \rightarrow 0^ +\) such that all subintervals shrink to zero in the limit as \(N \rightarrow \infty\) or \(\varepsilon \rightarrow 0^ +\). We can find \(t_j = j \times \Delta t = j\varepsilon\) such that \({\hat{W}}_k = {\hat{W}} ( k\varepsilon ), ~{\hat{c}}_k = {\hat{c}} (k\varepsilon ),~~ {\hat{V}}_j \buildrel \Delta \over = {\hat{V}}({\hat{w}},j\varepsilon ), ~~ {\hat{V}}_N \buildrel \Delta \over = {\hat{V}}({\hat{W}}_N,N\varepsilon ) ={\hat{F}}( {\hat{W}}_N, N\varepsilon )\). For \(j=0,\ldots ,N-1\) and \(k=j,\ldots ,N-1\), the original problem (1011) becomes

$$\begin{aligned} {\hat{V}}_j= \inf _{{\hat{c}} } {\mathbb {E}}^{ {\hat{w}}}_{j\varepsilon } \left( U({\hat{c}}_j ) \varepsilon + \sum \limits _{i = 1}^{N - j - 1} {\mathbb {D}} ( {0,i\varepsilon }) U({\hat{c}}_{i + j})\varepsilon +e^{ - (N - j)\rho \varepsilon } {\hat{V}}_N \right) \end{aligned}$$
(30)

subject to

$$\begin{aligned} \left\{ \begin{aligned} {\hat{W}}_{k + 1}&= {\hat{W}}_k + \left[ {\hat{W}}_k {{\hat{\mu }} _0} + {\hat{W}}_k {\hat{\pi }}_k({\hat{\mu }} - {{\hat{\mu }} _0})- {\hat{c}}_k \right] \varepsilon +\sum \limits _b^m {\hat{W}}_k {\hat{\pi }}^b_k {\hat{\sigma }} (z_{k + 1}^b - z_k^b)\\ {\hat{W}}_j&= {\hat{w}}\\ \end{aligned} \right. \end{aligned}$$
(31)

where \({\mathbb {E}}^{ {\hat{w}}}_{j\varepsilon }= {\mathbb {E}} \left[ \cdot \mid {\hat{W}}_j={\hat{w}} \right]\) is the conditional expectation. On one hand, multiplication of Eq. (30) by \(e^{ - (N - j-1)\rho \varepsilon }\) implies

$$\begin{aligned}&e^{ - (N - j - 1)\rho \varepsilon } e^{ - (N - j )\rho \varepsilon } {\hat{V}}_N = \inf _{{\hat{c}} } \nonumber \\&\quad {\mathbb {E}}^{ {\hat{w}}}_{j\varepsilon } \left( \begin{array}{l} e^{ - (N - j-1)\rho \varepsilon } {\hat{V}}_j \\ - e^{ - (N - j-1)\rho \varepsilon } U({\hat{c}}_j ) \varepsilon +\\ \sum \limits _{i = 1}^{N - j - 1} e^{ - (N - j-1)\rho \varepsilon } {\mathbb {D}} ( {0,i\varepsilon })U ({\hat{c}}_{i + j} )\varepsilon \\ \end{array} \right) \end{aligned}$$
(32)

Following the same procedure as Appendix 1 leads to

$$\begin{aligned} \begin{aligned}&\frac{\partial V(w,t) }{\partial t} \varepsilon + \frac{\partial V(w,t) }{\partial w} \left[ w { \mu _0} + w \pi (t)( \mu - { \mu _0})- c(t) \right] \varepsilon \\&\quad + \frac{1}{2} \frac{\partial ^2 V(w,t) }{\partial w^2 } w^2 \pi ^2 (t) \sigma ^2 \varepsilon \\&\quad + \frac{\partial V(w,t) }{\partial w} w \pi (t) \sigma \Big [z(t+\varepsilon ) -z(t)\Big ] +o(\varepsilon ) = \rho {\hat{V}}_j \varepsilon - U ( {\hat{c}}_j )\varepsilon + o(\varepsilon )\\&\quad +\sum \limits _{i = 1}^{N - j - 1} \Big [ ( 1 - \beta ) \lambda e^{ - \lambda i\varepsilon } \varepsilon + (r - \rho )\varepsilon \Big ] e^{ - ri\varepsilon } U ({\hat{c}}_{i + j} )\varepsilon \end{aligned} \end{aligned}$$
(33)

Dividing by \(\varepsilon\) and taking the limit \(\varepsilon \rightarrow 0\) complete the proof. \(\square\)

Appendix 4: Proof of Table 1

This section solves the heterogeneity problem (1011) under the logarithmic utility explicitly.

1.1 Precommitted and naive paradigms

Let a and b be constants. Under logarithmic utility, the functions in the SHQH behavior Eq. (14) are of the form

$$\begin{aligned} \left\{ \begin{array}{lr} U \Big (c^{P,N}(t_0) \Big )=\ln c^{P,N}(t_0) \\ V^{P,N} ( w,t_0 ) = \alpha ^{P,N} (t_0)\ln w + \psi ^{P,N}(t) \\ F(w) = b \ln w \end{array} \right. \end{aligned}$$
(34)

Using Eq. (14) and Eq. (34) (e.g. Shreve 2004), one arrives at the following plans made by the precommitted and naive decision-makers standing at any arbitrary point in the life cycle \(t_0\in [0,T]\)

$$\begin{aligned} \dfrac{c^{P,N} (t_0)}{W(t_0)} =\dfrac{1}{\alpha ^{P,N}(t_0)} \end{aligned}$$
(35)

where

$$\begin{aligned} \alpha ^{P,N}(t_0) = e^{- \rho (T-t)} b + \int \limits _{t_0}^T e^{ - r(\iota - t_0) } d\iota \end{aligned}$$
(36)

The precommitted decision-maker of cohort \(t_0\) governs the behavior of other selves. Her optimal policy is obtained by evaluating her planned consumption program (3536) at \(t=0\)

$$\begin{aligned} \dfrac{c ^P(t_0)}{W(t_0)} = \dfrac{1}{\alpha ^P (t_0)} \end{aligned}$$

where

$$\begin{aligned} \alpha ^P(t_0)= e^{ - \rho T} b + \int \limits _{t_0}^T e^{ - r(\iota - t_0) } d \iota \end{aligned}$$

For the naive decision-maker, the pain incurred by a old plan is continuously overwhelmed by the happiness from a new plan. Her optimal strategy is found by evaluating her planned consumption program (3536) at \(t=t_0\) and at \(t_0=t\)

$$\begin{aligned} \dfrac{c^N (t)}{W(t)} = \dfrac{1}{\alpha ^N (t)} \end{aligned}$$

where

$$\begin{aligned} \alpha ^N(t) = e^{ - \rho (T-t)} b + \int \limits _t^T e^{ - r(\iota - t) } d\iota \end{aligned}$$

1.2 Sophisticated paradigm

Under logarithmic utility, the functions in the SHQH non-standard HJB (12) are of the form

$$\begin{aligned} \left\{ \begin{array}{lr} U \Big (c^S(t) \Big )=\ln c^S(t) \\ V^S ( w,t ) = \alpha ^S (t) \ln w + \psi ^S(t) \\ F(w) = b\ln w \end{array} \right. \end{aligned}$$
(37)

Differentiating the SHQH non-standard HJB (12) with respect to c and Q and using Eq. (37), one arrives at the following first order condition (FOC):

$$\begin{aligned} \dfrac{c^S (t)}{W(t)} = \dfrac{1}{\alpha ^S (t)} \end{aligned}$$
(38)

Applying Ito’s lemma (e.g. Shreve 2004) on the wealth dynamics (11), and substituting the resulting equation into the K term (13) give

$$\begin{aligned} \begin{array}{l} K(w,t) = \int \limits _t^T e^{ - r(s - t)} \Big [\lambda ( 1 - \beta ) e^{ - \lambda (s - t) } + r - \rho \Big ] \ln \left( \dfrac{1 }{\alpha ^S(s)} \right) ds\\ ~~~~~~~ + \int \limits _t^T \Bigg \{ e^{ - r(s - t)} \Big [ \lambda ( 1-\beta ) e^{-\lambda (s-t)} + r - \rho \Big ] \underbrace{ ( \ln W(t)+ \int \limits _t^s \Gamma ^{\log } (\iota ) d\iota ) }_{{\mathbb {E}} (\ln W(s) ) } \Bigg \}ds \end{array} \end{aligned}$$
(39)

where

$$\begin{aligned} \Gamma ^{\log } (\iota )= \mu _0+ \frac{ (\mu - \mu _0 )^2}{2\sigma ^2} -\frac{1 }{\alpha ^S(\iota )} \end{aligned}$$

Inserting the K term (39) into the SHQH non-standard HJB (12) gives,

$$\begin{aligned} \alpha ^S(t) = b e^{ - \rho (T-t)} + \int \limits _t^T { \left\{ 1 - \int \limits _{\iota }^T { e^{ - r(s - \iota )} \Big [\lambda ( 1 - \beta ) e^{ - \lambda (s - \iota )} + r - \rho \Big ] } ds \right\} e^{ -\rho (\iota - t)} } d \iota \end{aligned}$$

Appendix 5: Proof of Table 2

This section solves the heterogeneity problem (1011) under the CRRA utility explicitly.

1.1 Precommitted and naive paradigms

Under the CRRA utility, the functions in the SHQH behavior Eq. (14) are of the form

$$\begin{aligned} \left\{ \begin{aligned}&U\Big (c^{P,N}(t_0) \Big )= \dfrac{ \Big (c^{P,N} ( t_0 ) \Big )^\gamma }{\gamma } \\&V^{P,N}( w,t_0 ) = \dfrac{\alpha ^{P,N} ( t_0 ) w^\gamma }{\gamma }\\&F(w) = \dfrac{ b w^\gamma }{\gamma } \end{aligned} \right. \end{aligned}$$
(40)

Combining(e.g. Shreve 2004) the conjecture (40) and the SHQH behavior Eq. (14), one arrives at the plans made by the precommitted and naive decision-makers standing at any arbitrary point in the life cycle \(t_0\in [0,T]\)

$$\begin{aligned} \dfrac{c^{P,N} (t_0)}{W(t_0)}= \left( \dfrac{1}{\alpha ^{P,N} (t_0)} \right) ^{\frac{1}{1 - \gamma }} \end{aligned}$$
(41)

where

$$\begin{aligned} \left\{ \begin{aligned}&\alpha ^{P,N} (t_0) = \Big ( \upsilon (t_0)\Big ) ^{\gamma - 1} \times \left[ \left( e^{ - \rho (T-t)} e^{r(T - t_0)} b \right) ^{\frac{1}{1 - \gamma }} \upsilon (T) + \int \limits _{t_0}^T \upsilon (\iota ) d\iota \right] ^{1-\gamma }\\&\upsilon ( t_0 ) = \exp \left[ - \frac{1}{1 - \gamma }\int \limits _0^{t_0} \left( r - \frac{ (\mu - \mu _0) ^2 \gamma }{2 ( 1 - \gamma ) \sigma ^2} - \mu _0 \gamma \right) d\iota \right] \\ \end{aligned} \right. \end{aligned}$$

The precommitted decision-maker of cohort \(t_0\) governs the behavior of other selves. Her optimal policy is obtained by evaluating Eq. (41) at \(t=0\)

$$\begin{aligned} \dfrac{c^P (t_0)}{W(t_0)} = \left( \dfrac{1}{\alpha ^P (t_0)} \right) ^{\frac{1}{1 - \gamma }} \end{aligned}$$

where

$$\begin{aligned} \alpha ^P (t_0) = \Big ( \upsilon (t_0) \Big ) ^{\gamma - 1} \times \left[ \left( e^{ - \rho T} e^{r(T - t_0)} b \right) ^{\dfrac{1}{1 - \gamma }} \upsilon (T) + \int \limits _{t_0}^T \upsilon (\iota ) d\iota \right] ^{1-\gamma } \end{aligned}$$

The naive decision-maker of cohort t re-optimizes at each instant. Her optimal policy is obtained by evaluating her planned consumption program (41) at \(t=t_0\) and \(t_0=t\),

$$\begin{aligned} \dfrac{c^N (t)}{W(t)} = \Big ( \dfrac{1}{\alpha ^N (t)} \Big )^{\frac{1}{1 - \gamma }} \end{aligned}$$

where

$$\begin{aligned} \alpha ^N (t) = \Big ( \upsilon (t) \Big )^{\gamma - 1} \times \left[ \left( e^{ - (\rho -r)(T - t)} b \right) ^{\frac{1}{1 - \gamma }} \upsilon (T) + \int \limits _{t}^T \upsilon (\iota ) d\iota \right] ^{1-\gamma } \end{aligned}$$

1.2 Sophisticated paradigm

Under CRRA utility, the functions in the SHQH non-standard HJB (12) are of the form

$$\begin{aligned} \left\{ \begin{array}{lr} U \Big (c^S(t) \Big )= \dfrac{ \Big (c^S (t) \Big )^\gamma }{\gamma } \\ V^S ( w,t ) = \dfrac{ \alpha ^S (t) w^\gamma }{\gamma } \\ F(w) = \dfrac{ b w^\gamma }{\gamma } \end{array} \right. \end{aligned}$$
(42)

Differentiating the SHQH non-standard HJB (12) with respect to c and using equation (42), one arrives at the following FOC,

$$\begin{aligned} \dfrac{c^S(t)}{W(t)} = \Big ( \dfrac{1}{\alpha ^S (t)}\Big )^{\frac{1}{1 - \gamma } } \end{aligned}$$
(43)

Applying Ito’s lemma on the wealth dynamics (11) and substituting the resulting equation into the K term (13) yield

$$\begin{aligned} K(w,t) = \frac{1}{\gamma } \int \limits _t^T { \left[ \begin{array}{lr} e^{ - r(s - t)} [\lambda ( 1 - \beta ) e^{ - \lambda (s - t)} + r - \rho ] \times \left( \dfrac{1}{\alpha ^S(s)} \right) ^{\frac{\gamma }{1 - \gamma }} \\ \times \underbrace{ (W(t))^\gamma \exp \big (\gamma \int \limits _t^s {\Gamma ^{CRRA } (\iota ) d\iota }\big ) }_{ {\mathbb {E}} \left( W(s) \right) ^\gamma } \end{array} \right] }ds \end{aligned}$$
(44)

where

$$\begin{aligned} \Gamma ^{CRRA } (\iota )= \mu _0+ \frac{ (\mu - \mu _0 )^2}{2(1-\gamma )\sigma ^2} - \left( \dfrac{1}{\alpha ^S(\iota )} \right) ^{\frac{\gamma }{1 - \gamma }} \end{aligned}$$

Or, equivalently,

$$\begin{aligned} K(w,t) = \frac{(W(t))^\gamma }{\gamma } H ^{CRRA}(t) \end{aligned}$$
(45)

where

$$\begin{aligned} H ^{CRRA}(t) = \int \limits _t^T { \left[ \begin{array}{lr} e^{ - r(s - t)} [\lambda ( 1 - \beta ) e^{ - \lambda (s - t)} + r - \rho ] \times \left( \dfrac{1}{\alpha ^S(s)} \right) ^{\frac{\gamma }{1 - \gamma }} \\ \times \exp \big (\gamma \int \limits _t^s {\Gamma ^{CRRA } (\iota ) d\iota }\big ) \end{array} \right] }ds \end{aligned}$$

Substituting the K term (45) into the SHQH non-standard HJB (12) gives,

$$\begin{aligned} \frac{\partial \alpha ^S(t)}{\partial t}- (\rho - M) \alpha ^S(t) = H ^{CRRA}(t) - (1 - \gamma ) \left( \alpha ^S(t) \right) ^{\frac{\gamma }{ \gamma -1 }} \end{aligned}$$
(46)

where

$$\begin{aligned} M= \gamma \mu _0+ \frac{\gamma (\mu - \mu _0 )^2}{2 (1-\gamma ) \sigma ^2} \end{aligned}$$

Appendix 6: Optimal strategies under CARA utility

This section solves the heterogeneity problem (1011) under the CARA utility explicitly.

1.1 Precommitted and naive paradigms

Under the CARA utility, the functions in the SHQH behavior Eq. (14) are of the form

$$\begin{aligned} \left\{ \begin{aligned}&U \Big (c^{P,N}(t_0) \Big )= \dfrac{-1 }{\gamma } e^ { -\gamma c^{P,N}(t_0 ) } \\&V ^{P,N} ( w,t_0 ) = -e^ { - \gamma \big [ \alpha ^{P,N} (t_0 ) + \psi ^{P,N} (t_0 )w \big ]} \\&F(w) = -b e^ {- \gamma w } \end{aligned} \right. \end{aligned}$$
(47)

Combining (e.g. Shreve (2004), page 453) the conjecture (47) and the SHQH behavior equation (14), we arrive at the plans made by the precommitted and naive decision-makers standing at any arbitrary point in the life cycle \(t_0\in [0,T]\)

$$\begin{aligned} c^{P,N} (t_0) = \alpha ^{P,N} (t_0) + \psi ^{P,N} (t_0) W(t_0) - \dfrac{1}{\gamma } \ln [ \gamma \psi (t_0)] \end{aligned}$$
(48)

where

$$\begin{aligned} \left\{ \begin{array}{lr} \alpha ^{P,N} (t_0)= \dfrac{1}{ \gamma } \left\{ \begin{array}{l} \Big [ \rho (T - t)- r(T - t_0)- \ln b \Big ] e^{\int \limits _{t_0}^T - \psi ^{P,N}(\nu ) d\nu }\\ - \int \limits _{t_0}^T \vartheta ^{P,N} (\iota ) e^{\int \limits _{t_0}^{\iota } { - \psi ^{P,N} (\nu ) d\nu } } d\iota \end{array} \right\} \\ \vartheta ^{P,N}(\iota ) = \psi ^{P,N}(\iota )\Big \{ 1 - \ln [ \gamma \psi ^{P,N} (\iota ) ] \Big \} - r - \dfrac{(\mu -\mu _0 ) ^2}{2 \sigma ^2} \\ \psi ^{P,N}(t_0) = \dfrac{\mu _0}{ (\mu _0 - 1) e^{ - \mu _0(T - t_0) } + 1} \end{array} \right. \end{aligned}$$

The precommitted decision-maker of cohort \(t_0\) governs the behavior of other selves. Her optimal policy is obtained by evaluating her planned consumption program (48) at \(t=0\)

$$\begin{aligned} c^P (t_0) = \alpha ^P (t_0) + \psi ^P (t_0) W(t_0) - \dfrac{1}{\gamma } \ln [ \gamma \psi ^P (t_0) ] \end{aligned}$$

where

$$\begin{aligned} \left\{ \begin{array}{lr} \alpha ^P(t_0)= \dfrac{1}{ \gamma } \left( \Big [ \rho T - r(T - t_0)- \ln b \Big ] e^{\int \limits _{t_0}^T - \psi ^P (\nu ) d\nu } -\int \limits _{t_0}^T \vartheta ^P(\iota ) e^{\int \limits _{t_0}^m { - \psi ^P (\nu ) d\nu } } d\iota \right) \\ \vartheta ^P(\iota ) = \psi ^P (\iota ) \Big \{ 1 - \ln [ \gamma \psi ^P (\iota ) ] \Big \} - r - \dfrac{(\mu -\mu _0 ) ^2}{2 \sigma ^2} \\ \psi ^P(t_0) = \dfrac{\mu _0}{ (\mu _0 - 1) e^{ - \mu _0(T - t_0) } + 1} \end{array} \right. \end{aligned}$$

For the naive decision-maker, her planned consumption program continues to become invalid and suboptimal with the progression of time . Her optimal policy is obtained evaluating her planned strategies (48) at \(t=t_0\) and \(t_0=t\)

$$\begin{aligned} c^N (t) = \alpha ^N (t) + \psi ^N (t) W(t) - \dfrac{1}{\gamma } \ln [ \gamma \psi ^N(t) ] \end{aligned}$$

where

$$\begin{aligned} \left\{ \begin{array}{lr} \alpha ^N(t)= \dfrac{1}{ \gamma } \left( \Big [ \rho (T - t)- r(T - t)- \ln b \Big ] e^{\int \limits _t^T - \psi ^N (\nu ) d\nu } - \int \limits _{t}^T \vartheta ^N(\iota ) e^{\int \limits _t^m { - \psi ^N (\nu ) d\nu } } d\iota \right) \\ \vartheta ^N(\iota ) = \psi ^N (\iota ) \Big \{ 1 - \ln [\gamma \psi ^N (\iota ) ] \Big \} - r - \dfrac{(\mu -\mu _0 ) ^2}{2 \sigma ^2}\\ \psi ^N(t) = \dfrac{\mu _0}{ (\mu _0 - 1) e^{ - \mu _0(T - t) } + 1} \end{array} \right. \end{aligned}$$

1.2 Sophisticated paradigm

Under the CARA utility, the functions in the SHQH non-standard HJB (12) are of the form

$$\begin{aligned} \left\{ \begin{array}{lr} U(c^S(t))= \dfrac{-1 }{\gamma } e^ { - \gamma c^S(t) } \\ V ^S ( w,t ) = -e^ { - \gamma \Big [ \alpha ^S (t) + \psi ^S (t)w \Big ]} \\ F(w) = -b e^ {- \gamma w } \end{array} \right. \end{aligned}$$
(49)

Plugging equation (49) into the SHQH non-standard HJB (12) and collecting similar terms (e.g. Shreve 2004), one arrives at optimal consumption–wealth ratio,

$$\begin{aligned} c^S (t) = \alpha ^S(t) + \psi ^S(t) W(t) - \dfrac{1}{\gamma } \ln [ \gamma \psi ^S (t) ] \end{aligned}$$
(50)

where

$$\begin{aligned} \psi ^S(t) = \dfrac{\mu _0}{ (\mu _0 - 1) e^{ - \mu _0(T - t) } + 1} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Kloeden, P.E. A solution method for heterogeneity involving present bias. Optim Eng 21, 1167–1194 (2020). https://doi.org/10.1007/s11081-020-09505-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-020-09505-y

Keywords

Navigation