Skip to main content

Advertisement

Log in

A concurrent implementation of the surrogate management framework with application to cardiovascular shape optimization

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

The surrogate management framework (SMF) is an effective approach for derivative-free optimization of expensive objective functions. The SMF is typically comprised of surrogate-based infill methods (SEARCH step) coupled to pattern search optimization (POLL step). Although the latter is easy to parallelize, parallelization of the SEARCH step requires surrogate-based strategies that generate multiple candidates at each iteration. The impact of such SEARCH methods on SMF performance remains poorly explored. In this paper, we extend the SMF to incorporate concurrent evaluations at the SEARCH step by comparing two different infill approaches: single search multiple error sampling and expected improvement constant liar approaches. These variants are generalized to address non-linearly constrained problems by the filter method. The proposed methods are benchmarked for different infill sizes, while accounting for the variability in initialization. We then demonstrate the proposed methods on two shape optimization problems motivated by hemodynamically-driven surgical design. Surrogate-based multiple-infill strategies outperform their single-infill counterparts for a fixed computational time budget on bound constrained problems. Insights drawn from this study have implications not only on future instances of the SMF, but also for other surrogate-based and hybrid parallel infill methods for derivative-free optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abbott WM, Megerman J, Hasson JE, L’Italien G, Warnock DF (1987) Effect of compliance mismatch on vascular graft patency. J Vasc Surg 5(2):376–382

    Google Scholar 

  • Abraham F, Behr M, Heinkenschloss M (2005) Shape optimization in unsteady blood flow: a numerical study of non-newtonian effects. Comput Methods Biomech Biomed Eng 8:201–212

    Google Scholar 

  • Abramson MA, Audet C (2006) Convergence of mesh adaptive direct search to second-order stationary points. SIAM J Optim 17(2):606–619

    MathSciNet  MATH  Google Scholar 

  • Abramson MA, Audet C, Dennis JE, Digabel SL (2009) OrthoMADS: a deterministic MADS instance with orthogonal directions. SIAM J Optim 20(2):948–966

    MathSciNet  MATH  Google Scholar 

  • Audet C, Dennis JE Jr (2000) A progressive barrier for derivative-free nonlinear programming. SIAM J Optim 20(1):445–472

    MathSciNet  MATH  Google Scholar 

  • Audet C, Dennis JE Jr (2003) Analysis of generalized pattern searches. SIAM J Optim 13(3):889–903

    MathSciNet  MATH  Google Scholar 

  • Audet C, Dennis JE Jr (2004a) A pattern search filter method for nonlinear programming without derivatives. SIAM J Optim 14(4):980–1010

    MathSciNet  MATH  Google Scholar 

  • Audet C, Dennis Jr, J.E (2004b) Mesh adaptive direct search algorithms for constrained optimization. Tech Rep G–2004–04, Les Cahiers du GERAD, École Polytechnique de Montréal, Département de Mathématiques et de Génie Industriel, C.P. 6079, Centre-ville, Montréal (Québec), H3C 3A7 Canada

  • Audet C, Dennis JE Jr (2006) Mesh adaptive direct search algorithms for constrained optimization. SIAM J Optim 17(1):2–11

    MathSciNet  MATH  Google Scholar 

  • Audet C, Dang CK, Orban D (2011) Efficient use of parallelism in algorithmic parameter optimization applications. Optim Lett 7(3):421–433

    MathSciNet  MATH  Google Scholar 

  • Audet C, Le Digabel S, Tribes C (2016) Dynamic scaling in the mesh adaptive direct search algorithm for blackbox optimization. Optim Eng 17(2):333–358

    MathSciNet  MATH  Google Scholar 

  • Bassiouny HS, White S, Glagov S, Choi E, Giddens DP, Zarins CK (1992) Anastomotic intimal hyperplasia: mechanical injury or flow induced. J Vasc Surg 15(4):708–717

    Google Scholar 

  • Beckley MC (2015) Comparison of sampling methods for kriging models. Ph.D. thesis, University of Pretoria

  • Beiranvand V, Hare W, Lucet Y (2017) Best practices for comparing optimization algorithms. Optim Eng 18(4):815–848

    MathSciNet  MATH  Google Scholar 

  • Belitz P (2011) Applications on multi-dimensional sphere packings: derivative-free optimization. Ph.D. thesis, University of California, San Diego

  • Booker AJ (2000) Well-conditioned Kriging models for optimization of computer models. Mathematics and Computing Technology Report 002, Boeing Phantom Works, Seattle, WA

  • Booker AJ, Dennis JE Jr, Frank PD, Serafini DB, Torczon V, Trosset MW (1999) A rigorous framework for optimization of expensive functions by surrogates. Struct Optim 17(1):1–13

    Google Scholar 

  • Bossek J (2017) Smoof: single-and multi-objective optimization test functions. R Journal 9(1):103–113

    Google Scholar 

  • Box GE, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery, vol 2. Wiley, Hoboken

    MATH  Google Scholar 

  • Bozsak F, Gonzalez-Rodriguez D, Sternberger Z, Belitz P, Bewley T, Chomaz JM, Barakat AI (2015) Optimization of drug delivery by drug-eluting stents. PLoS One 10(6):e0130182

    Google Scholar 

  • Breiman L, Cutler A (1993) A deterministic algorithm for global optimization. Math Program 58(1–3):179–199

    MathSciNet  MATH  Google Scholar 

  • Brochu E, Cora VM, de Freitas N (2010) A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. http://arxiv.org/abs/1012.2599

  • Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91(1):327–387

    MathSciNet  Google Scholar 

  • Contal E, Buffoni D, Robicquet A, Vayatis N (2013) Parallel Gaussian process optimization with upper confidence bound and pure exploration. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, Berlin, pp 225–240

    Google Scholar 

  • Couckuyt I, Deschrijver D, Dhaene T (2013) Fast calculation of multiobjective probability of improvement and expected improvement criteria for pareto optimization. J Global Optim 60(3):575–594

    MathSciNet  MATH  Google Scholar 

  • Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multobjective optimization. In: Abraham A, Jain L, Goldber R (eds) Evolutionary multiobjective optimization. Springer, London, pp 105–145

    MATH  Google Scholar 

  • Diamond P, Armstrong M (1984) Robustness of variograms and conditioning of kriging matrices. J Int Assoc Math Geol 16(8):809–822

    MathSciNet  Google Scholar 

  • Digabel SL (2011) Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans Math Softw 37(4):1–15

    MathSciNet  MATH  Google Scholar 

  • Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91(2):201–213

    MathSciNet  MATH  Google Scholar 

  • Dyke BV, Asaki TJ (2013) Using QR decomposition to obtain a new instance of mesh adaptive direct search with uniformly distributed polling directions. J Optim Theory Appl 159(3):805–821

    MathSciNet  MATH  Google Scholar 

  • Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2013) A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput Mech 52(5):1141–1152

    MathSciNet  MATH  Google Scholar 

  • Esmaily-Moghadam M, Bazilevs Y, Marsden A (2015) Impact of data distribution on the parallel performance of iterative linear solvers with emphasis on cfd of incompressible flows. Comput Mech 55(1):93–103

    MathSciNet  MATH  Google Scholar 

  • Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2015) A bi-partitioned iterative algorithm for solving linear systems arising from incompressible flow problems. Comput Methods Appl Mech Eng 286:40–62

    MathSciNet  MATH  Google Scholar 

  • Feinstein JA, Benson DW, Dubin AM, Cohen MS, Maxey DM, Mahle WT, Pahl E, Villafañe J, Bhatt AB, Peng LF et al (2012) Hypoplastic left heart syndrome: current considerations and expectations. J Am College Cardiol 59(1 Supplement):S1–S42

    Google Scholar 

  • Ginsbourger D, Le Riche R, Carraro L (2010) Kriging is well-suited to parallelize optimization. In: Tenne Y, Goh C (eds) Computational intelligence in expensive optimization problems. Adaptation learning and optimization, vol 2. Springer, Berlin

    Google Scholar 

  • Ginsbourger D, Janusevskis J, Le Riche R (2011) Dealing with asynchronicity in parallel Gaussian Process based global optimization. Tech Rep hal-00507632

  • Gould N, Scott J (2016) A note on performance profiles for benchmarking software. ACM Trans Math Softw (TOMS) 43(2):15

    MathSciNet  MATH  Google Scholar 

  • Gramacy RB, Gray GA, Le Digabel S, Lee HK, Ranjan P, Wells G, Wild SM (2016) Modeling an augmented lagrangian for blackbox constrained optimization. Technometrics 58(1):1–11

    MathSciNet  Google Scholar 

  • Grechy L, Iori F, Corbett R, Shurey S, Gedroyc W, Duncan N, Caro C, Vincent P (2017) Suppressing unsteady flow in arterio-venous fistulae. Phys Fluids 29(10):101901

    Google Scholar 

  • Griffiths G, Nagy J, Black D, Stonebridge P (2004) Randomized clinical trial of distal anastomotic interposition vein cuff in infrainguinal polytetrafluoroethylene bypass grafting. Br J Surg 91(5):560–562

    Google Scholar 

  • Gropp W, Thakur R, Lusk E (1999) Using MPI-2: advanced features of the message passing interface. MIT Press, Cambridge

    Google Scholar 

  • Haftka RT, Villanueva D, Chaudhuri A (2016) Parallel surrogate-assisted global optimization with expensive functions–a survey. Struct Multidiscip Optim 54(1):3–13

    MathSciNet  Google Scholar 

  • Haimovici H, Ascer E, Hollier L, Strandness D Jr, Towne J (1996) Haimovici’s vascular surgery. Blackwell Science, Hoboken

    Google Scholar 

  • Hansen N (2006) The CMA evolution strategy: a comparing review. In: Lozano JA, Larranaga P, Inza I, Bengoetxea E (eds) Towards a new evolutionary computation. Springer, Berlin, pp 75–102

    Google Scholar 

  • Hough PD, Kolda TG, Torczon VJ (2001) Asynchronous parallel pattern search for nonlinear optimization. SIAM J Sci Comput 23(1):134–156

    MathSciNet  MATH  Google Scholar 

  • How T, Rowe C, Gilling-Smith G, Harris P (2000) Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery. J Vasc Surg 31(5):1008–1017

    Google Scholar 

  • Jamil M, Yang XS (2013) A literature survey of benchmark functions for global optimization problems. Int J Math Model Numer Optim 4(2):150–94

    MATH  Google Scholar 

  • Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha\) method for integrating the filtered navier-stokes equations with a stabilized finite element method. Comput Meth Appl Mech Eng 190(3–4):305–319

    MathSciNet  MATH  Google Scholar 

  • Jin OA, Chen W, Sudijianto A (2005) An efficient algorithm for constructing optimal design of computer experiments. J Stat Plan Inference 134:268–87

    MathSciNet  MATH  Google Scholar 

  • Jones DR (2001) A taxonomy of global optimization methods based on response surfaces. J Global Optim 21(4):345–383

    MathSciNet  MATH  Google Scholar 

  • Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the lipschitz constant. J Optim Theory Appl 79(1):157–181

    MathSciNet  MATH  Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Global Optim 13(4):455–492

    MathSciNet  MATH  Google Scholar 

  • Koziel S, Michalewicz Z (1999) Evolutionary algorithms, homomorphous mappings and constrained parameter optimization. J Evol Comp 7(1):19–44

    Google Scholar 

  • Krige D (1951) A statistical approach to some mine valuations and allied problems in the Witwatersrand. J Chem Metall Min Soc South Africa 52:119–139

    Google Scholar 

  • Ku JP, Elkins CJ, Taylor CA (2005) Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Ann Biomed Eng 33(3):257–269

    Google Scholar 

  • Lemson M, Tordoir J, Daemen M, Kitslaar P (2000) Intimal hyperplasia in vascular grafts. Eur J Vasc Endovasc Surg 19(4):336–350

    Google Scholar 

  • Levy AV, Montalvo A (1985) The tunneling algorithm for the global minimization of functions. SIAM J Sci Stat Comput 6(1):15–29

    MathSciNet  MATH  Google Scholar 

  • Li R, Sudjianto A (2005) Analysis of computer experiments using penalized likelihood in gaussian kriging models. Technometrics 47(2):111–120

    MathSciNet  Google Scholar 

  • Li C, Brezillon J, Görtz S (2014) Efficient global optimization of a natural laminar airfoil based on surrogate modeling. In: Dillmann A, Heller G, Krämer E, Kreplin H, Nitsche W, Rist U (eds) New results in numerical and experimental fluid mechanics IX. Springer, Berlin, pp 53–63

    Google Scholar 

  • Liu J, Han Z, Song W (2012) Comparison of infill sampling criteria in kriging-based aerodynamic optimization. In: 28th congress of the international council of the aeronautical sciences, pp 23–28

  • Longest P, Kleinstreuer C, Archie JP (2003) Particle hemodynamics analysis of miller cuff arterial anastomosis. J Vasc Surg 38(6):1353–1362

    Google Scholar 

  • Marsden AL, Wang M, Dennis Jr JE (2003) Constrained aeroacoustic shape optimization using the surrogate management framework. In: Annual research briefs. Center for Turbulence Research, Stanford University, pp 399–412

  • Marsden AL, Feinstein JA, Taylor CA (2008) A computational framework for derivative-free optimization of cardiovascular geometries. Comput Meth Appl Mech Eng 197(21–24):1890–1905

    MathSciNet  MATH  Google Scholar 

  • Marsden AL (2014) Optimization in cardiovascular modeling. Annu Rev Fluid Mech 46:519–46

    MathSciNet  MATH  Google Scholar 

  • Marsden AL, Esmaily-Moghadam M (2015) Multiscale modeling of cardiovascular flows for clinical decision support. Appl Mech Rev 67(030804):1–11

    Google Scholar 

  • McKay MD, Conover WJ, Beckman RJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245

    MathSciNet  MATH  Google Scholar 

  • Miettinen K (1999) Nonlinear multiobjective optimization, vol 12. International series in operations research and management science. Kluwer Academic Publishers, London

    MATH  Google Scholar 

  • Miller J, Foreman R, Ferguson L, Faris I (1984) Interposition vein cuff for anastomosis of prosthesis to small artery. Aust N Z J Surg 54(3):283–285

    Google Scholar 

  • Moghadam ME, Marsden TYHA (2015) The assisted bidirectional Glenn: a novel surgical approach for first-stage single-ventricle heart palliation. J Thorac Cardio Surg 149(3):699–705

    Google Scholar 

  • Moghadam ME, Bazilevs Y, Hsia TY, Vignon-Clementel I, Marsden A (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291

    MathSciNet  MATH  Google Scholar 

  • Neville RF, Tempesta B, Sidawy AN (2001) Tibial bypass for limb salvage using polytetrafluoroethylene and a distal vein patch. J Vasc Surg 33(2):266–272

    Google Scholar 

  • Niederreiter H (1992) Random number generation and quasi-Monte Carlo methods, vol 63. SIAM, Philadelphia

    MATH  Google Scholar 

  • Norberto JJ, Sidawy AN, Trad KS, Jones BA, Neville RF, Najjar SF, Sidawy MK, DePalma RG (1995) The protective effect of vein cuffed anastomoses is not mechanical in origin. J Vasc Surg 21(4):558–566

    Google Scholar 

  • Norwood W, Kirklin J, Sanders S (1981) Hypoplastic left heart syndrome: experience with palliative surgery. J Thorac Cardiovasc Surg 82:511–9

    Google Scholar 

  • Norwood W, Lang P, Castaneda A, Campbell D (1981) Experience with operations for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 82:511–9

    Google Scholar 

  • Panneton JM, Hollier LH, Hofer JM (2004) Multicenter randomized prospective trial comparing a pre-cuffed polytetrafluoroethylene graft to a vein cuffed polytetrafluoroethylene graft for infragenicular arterial bypass. Ann Vasc Surg 18(2):199–206

    Google Scholar 

  • Park C, Haftka RT, Kim NH (2017) Remarks on multi-fidelity surrogates. Struct Multidiscip Optim 55(3):1029–1050

    MathSciNet  Google Scholar 

  • Passerini AG, Milsted A, Rittgers SE (2003) Shear stress magnitude and directionality modulate growth factor gene expression in preconditioned vascular endothelial cells. J Vasc Surg 37(1):182–190

    Google Scholar 

  • Peherstorfer B, Willcox K, Gunzburger M (2018) Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev 60(3):550–591

    MathSciNet  MATH  Google Scholar 

  • Peng CY, Wu C (2014) On the choice of nugget in kriging modeling for deterministic computer experiments. J Comput Graph Stat 23(1):151–168

    MathSciNet  Google Scholar 

  • Powell MJ (2006) The newuoa software for unconstrained optimization without derivatives. In: Large-scale nonlinear optimization. Springer, Berlin, pp 255–297

    Google Scholar 

  • Ramachandra AB, Sankaran S, Humphrey JD, Marsden AL (2015) Computational simulation of the adaptive capacity of vein grafts in response to increased pressure. J Biomech Eng 137(3):031009

    Google Scholar 

  • Rasmussen CE, Williams CKI (2005) Gaussian processes for machine learning (Adaptive computation and machine learning). The MIT Press, Cambridge

    Google Scholar 

  • Rozza G (2005) On optimization, control and shape design for an arterial bypass. Int J Numer Methods Fluids 47:1411–1419

    MathSciNet  MATH  Google Scholar 

  • Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–423

    MathSciNet  MATH  Google Scholar 

  • Sankaran S (2009) Stochastic optimization using a sparse grid collocation scheme. Prob Eng Mech 24(3):382–396

    Google Scholar 

  • Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer experiments. Springer, New York

    MATH  Google Scholar 

  • Sasena, M.J.: Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. Ph.D. thesis, University of Michigan, Ann Arbor (2002)

  • Saxena DK, Duro JA, Tiwari A, Deb K, Zhang Q (2012) Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans Evol Comput 17(1):77–99

    Google Scholar 

  • Schroeder WJ, Lorensen B, Martin K (2004) The visualization toolkit: an object-oriented approach to 3D graphics. Kitware, Clifton Park

    Google Scholar 

  • Seo J, Schiavazzi D, Marsden A (2019) Performance of preconditioned iterative linear solvers for cardiovascular simulations in rigid and deformable vessels. Comput Mech 64(3):717–739

    MathSciNet  MATH  Google Scholar 

  • Shang JK, Esmaily M, Verma A, Reinhartz O, Figliola RS, Hsia TY, Feinstein JA, Marsden AL (2019) Patient-specific multiscale modeling of the assisted bidirectional Glenn. Ann Thorac Surg 107(4):1232–39

    Google Scholar 

  • Shephard MS, Georges MK (1991) Automatic three-dimensional mesh generation by the finite octree technique. Int J Numer Methods Eng 32(4):709–749

    MATH  Google Scholar 

  • Siegman F (1979) Use of the venous cuff for graft anastomosis. Surg Gynecol Obstet 148(6):930–930

    MathSciNet  Google Scholar 

  • Stonebridge P, Prescott R, Ruckley C (1997) Randomized trial comparing infrainguinal polytetrafluoroethylene bypass grafting with and without vein interposition cuff at the distal anastomosis. J Vasc Surg 26(4):543–550

    Google Scholar 

  • Tamisier D, Vouhe P, Vernant F, Leca F, Massot C, Neveux J (1990) Modified blalock-taussig shunts: results in infants less than 3 months of age. Ann Thorac Surg 49:797–801

    Google Scholar 

  • Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Meth Appl Mech Eng 158:155–196

    MathSciNet  MATH  Google Scholar 

  • Torczon V, Trosset MW (1998) From evolutionary operation to parallel direct search: pattern search algorithms for numerical optimization. Comput Sci Stat 29:396–401

    Google Scholar 

  • Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD et al (2014) XSEDE: accelerating scientific discovery. Comput Sci Eng 16(5):62–74

    Google Scholar 

  • Updegrove A, Wilson NM, Merkow J, Lan H, Marsden A, Shadden S (2016) Simvascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng 45(3):525–541

    Google Scholar 

  • Veith FJ, Gupta SK, Ascer E, White-Flores S, Samson RH, Scher LA, Towne JB, Bernhard VM, Bonier P, Flinn WR, Astelford P, Yao JS, Bergan JJ (1986) Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J Vasc Surg 3(1):104–114

    Google Scholar 

  • Verma A, Esmaily M, Shang J, Figliola R, Feinstein JA, Hsia TY, Marsden AL (2018) Optimization of the assisted bidirectional glenn procedure for first stage single ventricle repair. World J Pediatr Congenit Heart Surg 9(2):157–170

    Google Scholar 

  • Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Meth Appl Mech Eng 195:3776–3796

    MathSciNet  MATH  Google Scholar 

  • Whiting CH, Jansen KE (2001) A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis. Int J Numer Meth Fluid 35(1):93–116

    MATH  Google Scholar 

  • Wild S, More J (2009) Benchmarking derivative-free optimization algorithms. SIAM J Optim 20(1):172–191

    MathSciNet  MATH  Google Scholar 

  • Wilson N, Wang K, Dutton R, Taylor CA (2001) A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lect Notes Comput Sci 2208:449–456

    MATH  Google Scholar 

  • Wong K, Brown L, Coan J, White D (2014) Distributive interoperable executive library (DIEL) for systems of multiphysics simulation. In: 2014 15th international conference on parallel and distributed computing, applications and technologies. IEEE

  • Yang W, Feinstein JA, Marsden AL (2010) Constrained optimization of an idealized Y-shaped baffle for the Fontan surgery at rest and exercise. Comput Methods Appl Mech Eng 199:2135–2149

    MATH  Google Scholar 

  • Yang W, Vignon-Clementel IE, Troianowski G, Reddy VM, Feinstein JA, Marsden AL (2012) Hepatic blood flow distribution and performance in conventional and novel y-graft fontan geometries: a case series computational fluid dynamics study. J Thorac Cardiovasc Surg 143(5):1086–1097

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health Grant NIH R01-EB018302 (to A.L. Marsden), National Science Foundation SSI Grants 1663671 and 1339824 (to A.L. Marsden), and National Science Foundation CDS&E Grant 1508794 (to A.L. Marsden). This work used computational resources provided by the Extreme Science and Engineering Discovery Environment (XSEDE) (Towns et al. 2014), which is supported by National Science Foundation Grant ACI-1548562. We also acknowledge the open source SimVascular project (www.simvascular.org) (Updegrove et al. 2016). We also wish to thank Weiguang Yang and Zachary Sexton for their comments and suggestions in improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aekaansh Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Analytical function set

This function set consists of 20 bound constrained test problems and 10 constrained test problems. These problems can be scaled to arbitrarily large dimensions. In this study, all bounds were rescaled to the unit hypercube. All strategies were initialized using 5 optimal Latin Hypercube Samples, containing 2d points each.

1.1 Bounded test function set

  1. 1.

    Sphere (Jamil and Yang 2013) :

    $$\begin{aligned} f^s_{1}(\varvec{x}) = \sum ^{d}_{i=1}{x^2_i}, \end{aligned}$$

    subject to \(-1 \le x_i \le 1\). The global minimum is located at \(x^*_i=0\).

  2. 2.

    Alpine-2 (Jamil and Yang 2013) :

    $$\begin{aligned} f^s_{2}(\varvec{x}) = \prod ^{d}_{i=1}{\sqrt{x_i}sin(x_i)}, \end{aligned}$$

    subject to \(0 \le x_i \le 10\). The global minimum is located at \(x^*_i=7.917\).

  3. 3.

    Brown (Jamil and Yang 2013) :

    $$\begin{aligned} f^s_{3}(\varvec{x}) = \sum ^{d-1}_{i=1}{ (x^2_i)^{(x^2_{i+1} + 1)} + (x^2_{i+1})^{(x^2_{i} + 1)} } \ \ , \end{aligned}$$

    subject to \(-1 \le x_i \le 4\). The global minimum is located at \(x^*_i=0\).

  4. 4.

    Chung-Reynolds (Jamil and Yang 2013) :

    $$\begin{aligned} f^s_{4}(\varvec{x}) = \left(\sum ^{d}_{i=1}{x^2_i}\right)^2 , \end{aligned}$$

    subject to \(-100 \le x_i \le 100\). The global minimum is located at \(x^*_i=0\).

  5. 5.

    Cosine Mixture (Breiman and Cutler 1993) :

    $$\begin{aligned} f^s_{5}(\varvec{x}) = \sum ^{d}_{i=1}{ (x^2_i - 0.1cos(5 \pi x_i)) } \ \ , \end{aligned}$$

    subject to \(-1 \le x_i \le 1\). The global minimum is located at \(x^*_i=0\).

  6. 6.

    Csendes (Jamil and Yang 2013) :

    $$\begin{aligned} f^s_{6}(\varvec{x}) = \sum ^{d}_{i=1}{x^6_i (2 + sin\left(\frac{1}{x_i})\right) }, \end{aligned}$$

    subject to \(-1 \le x_i \le 1\). The global minimum is located at \(x^*_i=0\).

  7. 7.

    Dixon & Price (Jamil and Yang 2013) :

    $$\begin{aligned} f^s_{7}(\varvec{x}) = (x_1 -1)^2 + \sum ^{d}_{i=2}{i(2 x^2_i - x_{i-1} )^2} \ \ , \end{aligned}$$

    subject to \(-10 \le x_i \le 10\). The global minimum is located at \(x^*_i=2^{(1 - \frac{1}{2^i})}\).

  8. 8.

    Giunta (Bossek 2017) :

    $$\begin{aligned} f^s_{8}(\varvec{x}) = 0.6 + \sum ^d_{i=1} \big [ sin^2(1-\frac{16}{15}x_i) - \frac{1}{50}sin(4-\frac{64}{15}x_i) - sin(1-\frac{16}{15}x_i) \big ] , \end{aligned}$$

    subject to \(-1 \le x_i \le 1\). The global minimum is located at \(x^*_i=0.46732\).

  9. 9.

    Levy-Montalvo (Levy and Montalvo 1985) :

    $$\begin{aligned} f^s_{9}(\varvec{x}) = sin^2(\pi w_1) + \sum ^{d-1}_{i=1}{(w_i-1)^2(1 + 10sin^2(\pi w_{i+1}))} + (w_d -1)^2 , \end{aligned}$$

    where

    $$\begin{aligned} w_i = 1 + \frac{x_i-1}{4}, \end{aligned}$$

    subject to \(-10 \le x_i \le 10\). The global minimum is located at \(x^*_i=1\).

  10. 10.

    Mishra-2 (Jamil and Yang 2013) :

    $$\begin{aligned} f^s_{10}(\varvec{x}) = (1+d - \sum _{i=1}^{d-1}{0.5(x_i+x_{i+1})})^{d-\sum _{i=1}^{d-1} 0.5(x_i + x_{i+1})} , \end{aligned}$$

    subject to \(0 \le x_i \le 1\). The global minimum is located at \(x^*_i=1\).

  11. 11.

    Paviani (Jamil and Yang 2013) :

    $$\begin{aligned} f^s_{11}(\varvec{x}) = \sum _{i=1}^{d} {( (ln(x_i-2))^2 + (ln(10-x_i))^2 )} - (\prod _{i=1}^{d} x_i)^{0.2} \ \ , \end{aligned}$$

    subject to \(2.0001 \le x_i \le 9.9999\). The closed form minimizer for this function is not known and varies with d, however it lies in the hypercube : \(8.2<= x^*_i <= 9.9999\), moving closer to \(x^*_i <= 9.9999\) with increase in d.

  12. 12.

    Ripple-25 (Jamil and Yang 2013):

    $$\begin{aligned} f^s_{12}(\varvec{x}) = \sum _{i=1}^d -e^{-\frac{2log(2(x_i-0.1)^2)}{0.64}} (sin^6(5\pi x_i)), \end{aligned}$$

    subject to \(0 \le x_i \le 1\). The global minimum is located at \(x^*_i=0.1\).

  13. 13.

    Rosenbrock (Jamil and Yang 2013):

    $$\begin{aligned} f^s_{13}(\varvec{x}) = \sum _{i=1}^{d-1} [100(x_{i+1} - x_i^2)^2 + (x_i-1)^2 ] , \end{aligned}$$

    subject to \(-30 \le x_i \le 30\). The global minimum is located at \(x^*_i=1\).

  14. 14.

    Sargan (Jamil and Yang 2013) :

    $$\begin{aligned} f^s_{14}(\varvec{x}) = \sum _{i=1}^d d(x_i^2 + 0.4\sum _{j \ne i} x_i x_j) , \end{aligned}$$

    subject to \(-100 \le x_i \le 100\). The global minimum is located at \(x^*_i=0\).

  15. 15.

    Schwefel-25 (Jamil and Yang 2013) :

    $$\begin{aligned} f^s_{15}(\varvec{x}) = \sum _{i=1}^{d} (x_i-1)^2 + (x_1 - x_i^2)^2 \ \ , \end{aligned}$$

    subject to \(0 \le x_i \le 10\). The global minimum is located at \(x^*_i=1\).

  16. 16.

    Schwefel-26 (Jamil and Yang 2013) :

    $$\begin{aligned} f^s_{16}(\varvec{x}) = -\frac{1}{d} \sum _{i=1}^{d} x_i sin(\sqrt{|x_i |}) , \end{aligned}$$

    subject to \(-500 \le x_i \le 500\). The global minimum is located at \(x^*_i=420.968746\).

  17. 17.

    Styblinski-Tang: (Jamil and Yang 2013)

    $$\begin{aligned} f^s_{17}(\varvec{x}) = \frac{1}{2} \sum _{i=1}^{d} (x_i^4 - 16 x_i^2 + 5x_i) , \end{aligned}$$

    subject to \(-5 \le x_i \le 5\). The global minimum is located at \(x^*_i=-2.903534\).

  18. 18.

    Trid: (Jamil and Yang 2013)

    $$\begin{aligned} f^s_{18}(\varvec{x}) = \sum _{i=1}^d (x_i-1)^2 - \sum _{i=2}^d x_i x_{i-1} \ \ , \end{aligned}$$

    subject to \(- \frac{1}{2}(d+1)^2 \le x_i \le \frac{1}{2}(d+1)^2\). The global minimum is the solution of the tridiagonal system

    $$\begin{aligned} T_d x^* = r_d , \end{aligned}$$

    where \(T_d\) is a \(d \times d\) tridiagonal matrix, given by :

    $$\begin{aligned} T_d = \left[ \begin{matrix} 1 &{} -0.5 &{} &{} 0\\ -0.5 &{} \ddots &{} \ddots &{} \\ &{} \ddots &{} \ddots &{} -0.5 \\ 0 &{} &{} -0.5 &{} 1 \end{matrix} \right] \end{aligned}$$
    (14)

    and \(r_d\) is a \(d \times 1\) vector, with \(r_d^{\intercal } = \left[ 1, 1, \dots 1 \right]\).

  19. 19.

    Xin-She Yang-3 (Jamil and Yang 2013):

    $$\begin{aligned} f^s_{19}(\varvec{x}) = [ e^{\sum _{i=1}^d (\frac{x_i}{15})^{10}} - 2e^{-\sum _{i=1}^d(x_i)^2}. \prod _{i=1}^d cos^2 (x_i) ] \ \ , \end{aligned}$$

    subject to \(-20 \le x_i \le 20\). The global minimum is located at \(x^*_i=0\).

  20. 20.

    Zakharov (Jamil and Yang 2013):

    $$\begin{aligned} f^s_{20}(\varvec{x}) = \sum _{i=1}^d x_i^2 + \left( \frac{1}{2} \sum _{i=1}^d ix_i \right) ^2 + \left( \frac{1}{2} \sum _{i=1}^d ix_i \right) ^4 \ \ , \end{aligned}$$

    subject to \(-5 \le x_i \le 10\). The global minimum is located at \(x^*_i=0\).

1.2 Constrained test function set

For the constrained optimization problems, we consider a set of 10 scalable problems. These include 4 well known scalable multi-objective optimization problems (\(f^c_7,f^c_8,f^c_9,f^c_{10}\)), which were adapted to single-objective constrained optimization problems via an \(\varepsilon\)-constraint approach (Miettinen 1999). Since these multi-objective problems are scalable to a flexible number of objectives (up to dimension d), we set the number of objectives (M) to 4. This limits us to only consider dimensions \(d>4\) for constrained optimization benchmarking. All strategies were initialized using 5 optimal Latin Hypercube Samples, containing 2d points each. Table 5 lists the number of initializations that were feasible for each (function,dimension) pair.

  1. 1.

    Sphere with one linear constraint :

    $$\begin{aligned} f^c_{1}(\varvec{x}) = \sum _{i=1}^d x_i^2 \end{aligned}$$

    subject to :

    $$\begin{aligned} 0.5 - \sum _{i=1}^d x_i \le 0, \end{aligned}$$

    and \(-1 \le x_i \le 1\). The global minimum is located at \(x^*_i=\frac{1}{2d}\).

  2. 2.

    Sphere with two disconnected feasible islands :

    $$\begin{aligned} f^c_{2}(\varvec{x}) = \sum _{i=1}^d x_i^2 \end{aligned}$$

    subject to :

    $$\begin{aligned} \bigg ( \sum _{i=1}^d (x_i-0.6)^2 - 0.09d \bigg ) \bigg ( \sum _{i=1}^d (x_i+0.2)^2 - 0.01d \bigg ) \le 0 \end{aligned}$$

    and \(-1 \le x_i \le 1\). The global minimum is located at \(x^*_i=-0.1\).

  3. 3.

    Rosenbrock (Jamil and Yang 2013) constrained within unit sphere:

    $$\begin{aligned} f^c_{3}(\varvec{x}) = \sum _{i=1}^{d-1} [100(x_{i+1} - x_i^2)^2 + (x_i-1)^2 ] , \end{aligned}$$

    subject to :

    $$\begin{aligned} \sum _{i=1}^d (x_i)^2 \le 1.0 \end{aligned}$$

    and \(-30 \le x_i \le 30\). A closed form global minimum is not known.

  4. 4.

    Trid (Jamil and Yang 2013) with a 2-norm constraint :

    $$\begin{aligned} f^c_{4}(\varvec{x}) = \sum _{i=1}^d (x_i-1)^2 - \sum _{i=2}^d x_i x_{i-1} \end{aligned}$$

    subject to :

    $$\begin{aligned} \Vert \varvec{x}\Vert _2^2 \le d^3 \end{aligned}$$

    and\(- \frac{1}{2}(d+1)^2 \le x_i \le \frac{1}{2}(d+1)^2\). A closed form solution is not known.

  5. 5.

    G02 (Koziel and Michalewicz 1999):

    $$\begin{aligned} f^c_{5} (\varvec{x}) = \left|\frac{\sum _{i=1}^d cos^4 (x_i) - \prod _{i=1}^d cos^2 (x_i) }{\sqrt{\sum _{i=1}^d ix_i^2}} \right|\end{aligned}$$

    subject to:

    $$\begin{aligned} 0.75 - \prod _{i=1}^d x_i\le & {} 0 , \\ \sum _{i=1}^d x_i - 7.5d\le & {} 0 \end{aligned}$$

    and \(0 \le x_i \le 10\). A closed form solution is not known.

  6. 6.

    G03 (Koziel and Michalewicz 1999):

    $$\begin{aligned} f^c_{6} (\varvec{x}) = - (\sqrt{d})^d \prod _{i=1}^d x_i \end{aligned}$$

    subject to the relaxed equality constraint:

    $$\begin{aligned} \left|\bigg ( \sum _{i=1}^d x_i^2 \bigg ) -1 \right|\le \varepsilon \end{aligned}$$

    and \(0 \le x_i \le 1\). We set \(\varepsilon =0.025\), for which the global minimum is located at \(x^*_i= \sqrt{\frac{0.975}{d}}\).

  7. 7.

    DTLZ1 (Deb et al. 2005), adapted as an \(\varepsilon\)-constraint problem:

    $$\begin{aligned} f^c_{7} (\varvec{x}) = \frac{1}{2} x_1 x_2 \ldots x_{M-1} (1 + g^c_7(\varvec{x}_{M:d})) \end{aligned}$$

    subject to :

    $$\begin{aligned} \frac{1}{2} x_1 x_2 \ldots x_{M-2} ( 1-x_{M-1} ) (1+g^c_7(\varvec{x}_{M:d}))\le & \varepsilon , \\ \frac{1}{2} x_1 x_2 \ldots (1 - x_{M-2}) (1+g^c_7(\varvec{x}_{M:d}))\le & \varepsilon , \ldots \\ \frac{1}{2} x_1 ( 1-x_{2} ) (1+g^c_7(\varvec{x}_{M:d}))\le & \varepsilon , \\ \frac{1}{2} (1 - x_1) (1+g^c_7(\varvec{x}_{M:d}))\le & \varepsilon , \end{aligned}$$

    and \(0 \le x_i \le 1\). Here, we set \(\varepsilon =\frac{1}{2M}\) and define the function \(g^c_7(\varvec{x})\) as:

    $$\begin{aligned} g^c_7(\varvec{x}_{M:d}) = 100 \big ( d -M +1 + \sum _{i=M}^d \left[ (x_i-0.5)^2 - cos(20 \pi (x_i-0.5))\right] \big ). \end{aligned}$$

    The global minimum is \(\varvec{x}_i = 1 -\frac{2\varepsilon }{(1-2(i-1)\varepsilon )}\) for \(i=1,\ldots ,M-1\), and \(\varvec{x}_{M:d}=0.5\).

  8. 8.

    DTLZ2 (Deb et al. 2005), adapted as an \(\varepsilon\)-constraint problem:

    $$\begin{aligned} f^c_{8} (\varvec{x}) = cos(\pi x_1/2) cos(\pi x_2/2) \ldots cos(\pi x_{M-2}/2) cos(\pi x_{M-1}/2) (1+g^c_8(\varvec{x}_{M:d})) \end{aligned}$$

    subject to :

    $$\begin{aligned} \bigg ( (1+g^c_8(\varvec{x}_{M:d}))cos(\pi x_1/2) cos(\pi x_2/2) \ldots cos(\pi x_{M-2}/2) sin(\pi x_{M-1}/2) \bigg )^2\le & \varepsilon , \\ \bigg ( (1+g^c_8(\varvec{x}_{M:d}))cos(\pi x_1/2) cos(\pi x_2/2) \ldots sin(\pi x_{M-2}/2) \bigg )^2\le & \varepsilon , \ldots \\ \bigg ( (1+g^c_8(\varvec{x}_{M:d}))cos(\pi x_1/2) sin(\pi x_2/2) \bigg )^2\le & \varepsilon , \\ \bigg ( (1+g^c_8(\varvec{x}_{M:d}))sin(\pi x_1/2) \bigg )^2\le & \varepsilon \end{aligned}$$

    and \(0 \le x_i \le 1\). Here, we set \(\varepsilon =\frac{1}{M}\) and define the function \(g^c_8(\varvec{x})\) as: \(g^c_8(\varvec{x}_{M:d}) = \sum _{i=M}^d (x_i-0.5)^2\). The global minimum is \(\varvec{x}_i = \frac{2}{\pi }sin^{-1}\big (\frac{\varepsilon }{(1-(i-1)\varepsilon )} \big )\) for \(i=1,\ldots ,M-1\), and \(\varvec{x}_{M:d}=0.5\).

  9. 9.

    Modified DTLZ5 (Saxena et al. 2012) or DTLZ5(2,M), adapted as an \(\varepsilon\)-constraint problem:

    $$\begin{aligned} f^c_9 (\varvec{x}) = cos(\theta _1) cos(\theta _2) \ldots cos(\theta _{M-2}) cos(\theta _{M-1}) (1+g^c_9(\varvec{x}_{M:d})) \end{aligned}$$

    subject to :

    $$\begin{aligned} h_1(\varvec{x})= & (1+g^c_9(\varvec{x}_{M:d}))cos(\theta _1) cos(\theta _2) \ldots cos(\theta _{M-2}) sin(\theta _{M-1}) \le \varepsilon , \\ h_2(\varvec{x})= & (1+g^c_9(\varvec{x}_{M:d}))cos(\theta _1) cos(\theta _2) \ldots sin(\theta _{M-2}) \le \varepsilon , \ldots \\ h_{M-2}(\varvec{x})= & {} (1+g^c_9(\varvec{x}_{M:d}))cos(\theta _1) sin(\theta _2) \le \varepsilon , \\ h_{M-1}(\varvec{x})= & {} (1+g^c_9(\varvec{x}_{M:d}))sin(\theta _1) \le \varepsilon , \\ h_{M} (\varvec{x})= & {} 1 - h_{M-1}^2(\varvec{x}) - 2^{M-2} f^c_9 (\varvec{x}) \le 0 , \\ h_{M+1} (\varvec{x})= & {} 1 - h_{M-1}^2(\varvec{x}) - 2^{M-2} h_1 (\varvec{x}) \le 0 , \\ h_{M+2} (\varvec{x})= & {} 1 - h_{M-1}^2(\varvec{x}) - 2^{M-3} h_2 (\varvec{x}) \le 0 , \ldots \\ h_{2M-3} (\varvec{x})= & {} 1 - h_{M-1}^2(\varvec{x}) - 2^{2} h_{M-3} (\varvec{x}) \le 0 , \\ h_{2M-2} (\varvec{x})= & {} 1 - h_{M-1}^2(\varvec{x}) - 2^{1} h_{M-2} (\varvec{x}) \le 0 , \end{aligned}$$

    and \(0 \le x_i \le 1\). Here, the function \(g^c_9(\varvec{x})\) is defined as: \(g^c_9(\varvec{x}_{M:d}) = \sum _{i=M}^d (x_i-0.5)^2\) , \(\theta _0 = \pi x_1 /2\) and for \(i=2,\ldots ,d\),

    $$\begin{aligned} \theta _i = \frac{\pi (1+2g(\varvec{x}_{M:d}x_i))}{4(1+g(\varvec{x}_{M:d})}. \end{aligned}$$

    \(\varepsilon\) is set to 0.5. There exist a continuum of solutions that satisfy \(\varvec{x}_{M:d}=0.5\) and \(\varvec{x}_0 = \frac{2}{\pi } sin^{-1} (\varepsilon )\).

  10. 10.

    DTLZ9 (Deb et al. 2005), adapted as an \(\varepsilon\)-constraint problem:

    $$\begin{aligned} f^c_{10} (\varvec{x}) = \sum _{i=0}^{\lfloor d/M \rfloor } \varvec{x}_i^{p} \end{aligned}$$

    subject to :

    $$\begin{aligned} h_{1} (\varvec{x})= & {} \sum _{i=\lfloor d/M \rfloor }^{\lfloor 2d/M \rfloor } \varvec{x}_i^{p} \le \varepsilon , \\ h_{2} (\varvec{x})= & {} \sum _{i=\lfloor 2d/M \rfloor }^{\lfloor 3d/M \rfloor } \varvec{x}_i^{p} \le \varepsilon , \ldots \\ h_{M-1} (\varvec{x})= & {} \sum _{i=\lfloor (M-1)d/M \rfloor }^{d} \varvec{x}_i^{p} \le \varepsilon , \\ h_{M} (\varvec{x})= & {} 1 - h_{M-1}^2(\varvec{x}) - (f^c_{10} (\varvec{x}))^2 \le 0, \\ h_{M+1} (\varvec{x})= & {} 1 - h_{M-1}^2(\varvec{x}) - h_{1}^2 (\varvec{x}) \le 0, \\ h_{M+2} (\varvec{x})= & {} 1 - h_{M-1}^2(\varvec{x}) - h_{2}^2 (\varvec{x}) \le 0, \ldots \\ h_{2M-2} (\varvec{x})= & {} 1 - h_{M-1}^2(\varvec{x}) - h_{M-2}^2 (\varvec{x}) \le 0, \end{aligned}$$

    and \(0 \le x_i \le 1\). We set \(\varepsilon\) to 0.5 and \(p=1\). The minimum is approximately \(\varvec{x}_{1:d-1} = (\frac{\varepsilon }{\alpha })^{\frac{1}{p}}\), where \(\alpha = \text {max}_j \big (\lfloor (j+1)d/M \rfloor \big ) - \big (\lfloor jd/M \rfloor \big )\). \(\varvec{x}_d\) is the minimum value that satisfies \(h_{M:2M-2}(\varvec{x})\).

Table 5 Number of Latin Hypercube initializations (5 total) that were feasible i.e. had at least one evaluation within initialization set which was feasible

Effect of Kriging stabilization strategies on surrogate performance

It is well known that the numerical stability of the Kriging procedure becomes a concern as number of observations increase (Diamond and Armstrong 1984). On the other hand, an artificial regression of the predictor to the mean may lead to uninformative surrogates (Li and Sudjianto 2005; Sasena 2002). To make the Kriging surrogate more robust, we consider two methods: (1) nuggeting (Sacks et al. 1989; Peng and Wu 2014; 2) \(L_2\) penalized likelihood (Li and Sudjianto 2005). Nuggeting, in its simplest form, applies a small positive perturbation along the diagonal of the covariance matrix. Hence, it acts as a regularization in the vein of ridge regression. Penalized likelihood involves directly penalizing the maximum likelihood objective with a measure of the hyper-parameter size. This is favorable in situations of an insensitive likelihood function, leading to poor identifiability of hyper-parameters. Both methods have distinct benefits; the former ensures robustness in event of pile-up (Booker 2000) or clustering of design points that are close by, while the latter makes the estimation of hyper-parameters robust to artificially large hyper-parameter values.

The overall impact of these stabilization methods for the Surr-min SEARCH strategy applied to the benchmark set (Appendix A), is summarized in Fig. 19. A nugget value of \(10^{-7}\) is applied for nuggeting. The performance and data profiles are drawn with \(\tau =10^{-3}\). The overall performance of the optimization method is improved when both penalization and nuggeting are employed in conjunction. Both nuggeting and penalized likelihood show an improvement over Surr-min without stabilization, indicating that each method individually has a favorable impact on optimization. These strategies were integrated into the surrogate construction for all strategies studied.

Fig. 19
figure 19

Performance (left) and data profiles (right) based on number of evaluations, for different stabilization methods: Nuggeting (nug), regularization via penalized likelihood (reg), with both nuggeting and penalized likelihood (nugreg) and no stabilization (nostab)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Wong, K. & Marsden, A.L. A concurrent implementation of the surrogate management framework with application to cardiovascular shape optimization. Optim Eng 21, 1487–1536 (2020). https://doi.org/10.1007/s11081-020-09483-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-020-09483-1

Keywords

Navigation