Skip to main content
Log in

Multistage stochastic capacity planning of partially upgraded bitumen production with hybrid solution method

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

Partial upgrading technologies have received a great amount of attention as a promising and economic solution for Canadian oil sands bitumen processing. In this paper, the optimal planning of capital and expansion capacities for partial upgrading of bitumen is studied. We propose a multistage stochastic planning model with consideration of various sources of uncertainties. The main challenge of the stochastic model is the presence of terms in which an uncertain parameter is multiplied by an adjustable dynamic decision variable. To solve the problem, two hybrid methods are proposed: in method 1, the uncertain parameter is modeled with an uncertainty set and the dynamic variable is modeled as scenario dependent variables; in method 2, the uncertain parameter is modeled with samples and the dynamic variable is modeled using the decision rule-based approximation. Finally, results obtained from both hybrid models are compared based on different criteria: (1) computational time, (2) solution performance, and (3) solutions for representative scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Government of Alberta’s Facts and Stats. https://www.alberta.ca/index.aspx.

  2. CBC news. http://www.cbc.ca/news/canada/british-columbia/trans-mountain-pipeline-bc-reference-case-1.4636474.

  3. Thermal in-situ facilities. http://www.oilsandsmagazine.com/projects/thermal-in-situ.

Abbreviations

SCO:

Synthetic crude oil

DilBit:

Diluted bitumen

PUB:

Partial upgraded blend

NPUP:

National partial upgrading program

HI-Q:

High quality

HDR:

Husky diluent reduction

MSSP:

Multistage stochastic programming

PU:

Partial upgrader

OPEX:

Operating cost

CAPEX:

Capital cost

LDR:

Linear decision rule

MILP:

Mixed integer linear programming

\(i \in {I}\) :

Set of technologies for partial upgrading

\(t \in {T}\) :

Set of time periods

\(\xi \in \varXi\) :

Set of uncertainties

\(s,s' \in {S}\) :

Set of nodes on the scenario tree in H1 model

\(S_{-1}\) :

Subset of nodes on the scenario tree except the \(s=1\)

L :

Subset of leaf nodes (all the nodes on the last stage of scenario tree)

A(s):

Subset of ancestors of node s (excluding itself)

P(s):

Subset of nodes on the path to node s (including itself)

\(k \in {K}\) :

Set of samples in H2 model

\(\alpha _i\) :

Operating cost coefficient for each technology (M$/bbl)

\(\beta _i\) :

Capital cost coefficient for each technology (M$/bbl)

\(\delta\) :

Operating days per time period

\(\gamma\) :

Investment budget (\( M\$ \))

\(\underline{\xi }^{\nu _t}\), \(\overline{\xi }^{\nu _t}\) :

Lower and upper bounds for the increase in bitumen processing target (bpd)

r :

Interest rate (%)

\(\nu _t\) :

Bitumen processing target (bpd)

\(\phi _i\) :

Commercialization factor

\(\underline{\varOmega }\), \(\overline{\varOmega }\) :

Lower and upper bounds for capacity (bpd)

\(\varPhi\) :

Commercialization threshold

\(Pr_s\) :

Probability of node s on the scenario tree

\(\tau _s\) :

Time period associated with node s on the scenario tree

\(\epsilon\) :

Perturbation of uncertainties (%)

h :

Coefficient vector of uncertainty set for H1 model

W :

Coefficient matrix of uncertainty set for H1 model

l :

Coefficient vector of uncertainty set for H2 model

M :

Coefficient matrix of uncertainty set for H1 model

\(\varLambda ^d\), \(\varLambda ^e_s\), \(\varLambda ^f_s\) :

Variables stemmed from dual counterpart of inequality constraints 1d, 1e, and 1f in H1 model

\(\varPi ^b_t\), \(\varPi ^{c_1}_{i,t}\), \(\varPi ^{c_2}_{i,t}\), \(\varPi ^e_{k,t}\), \(\varPi ^f_k\), \(\varPi ^{h_1}_{i,t}\), \(\varPi ^{h_2}_{i,t}\) :

Variables stemmed from dual counterpart of inequality constraints 1b, 1c, 1e, 1f, and 1h in H2 model

\(Y^C_i\) :

Binary variables for capital installation of a technology

\(Y^X_{i,t}\) :

Binary variables for expansion installation of a technology

\(C_i\) :

Capital capacity of a technology (bpd)

\(X_{i,t}\) :

Expansion capacity of a technology at a time period (bpd)

\(O_{i,t}\) :

Operating capacity of a technology at a time period (bpd)

References

  • Bernar RF, Jia L (2016) Partial upgrading system and method for heavy hydrocarbons. US Patent Number 20160145505

  • Braaten SV, Gjnnes O, Hjertvik K, Fleten SE (2016) Linear decision rules for seasonal hydropower planning: modelling considerations. Energy Procedia 87:28–35

    Article  Google Scholar 

  • Canadian Heavy Oil Crude Competitiveness Study Phase 2 (2015) http://www.ai-ees.ca/wp-content/uploads/2016/04/canadian_heavy_crude_oil_competitiveness_study_executive_summary_final.pdf Report, Muse Stancil

  • Castaneda LC, Munoz JAD, Ancheyta J (2014) Current situation of emerging technologies for upgrading of heavy oils. Catal Today 220:248–273

    Article  Google Scholar 

  • Chornet M, Chronopoulos C, Dehkissia S (2017) Treatment of heavy oils to reduce olefin content. US Patent Number 9745525

  • Colyar J (2009) Has the time for partial upgrading of heavy oil and bitumen arrived? Pet Technol Q 14:43–56

    Google Scholar 

  • Corscadden T, Kearns J, Diduch G, Hocking D, Remesat D (2014) Separation of solid asphaltenes from heavy liquid hydrocarbons using novel apparatus and process (”IAS”). US Patent Number 20140246357

  • Corscadden T, Diduch G, Hocking D, Remesat D, Kearns J (2015a) Low complexity, high yield conversion of heavy hydrocarbons. US Patent Number 9200211

  • Corscadden T, Diduch G, Hocking D, Remesat D, Kearns J (2015b) Solvent de-asphalting with cyclonic separation. US Patent Number 9150794

  • Crude Oil Forecast, Markets and Transportation (2017) Report, Canadian Association of Petroleum Producers (CAPP). https://www.capp.ca/publications-and-statistics/publications/303440. Accessed May 2018

  • De Klerk A, Zerpa Reques NG, Xia Y, Omer AA (2014) Integrated central processing facility (CPF) in oil filed upgrading (OFU). US Patent Number 20140138287

  • Erbis S, Kamarthi S, Cullinane TP, Isaacs JA (2014) Multistage stochastic programming (MSP) model for carbon nanotube production capacity expansion planning. ACS Sustain Chem Eng 7:1633–1641

    Article  Google Scholar 

  • Fellows G, Mansell R, Schlenker R, Winter J (2017) Public-interest benefit evaluation of partial-upgrading technology. Report, The School of Public Policy Research Papers, University of Calgary. Vol. 10, Issue 1

  • Golari M, Fan N, Jin T (2017) Multistage stochastic optimization for production-inventory planning with intermittent renewable energy. Prod Oper Manag 26:409–425

    Article  Google Scholar 

  • Keesom B, Gieseman J (2018) Bitumen Partial Upgrading 2018 Whitepaper. Technical report. Jacobs Consultancy Inc

  • Keyvanshokooh E, Ryan SM, Kabir E (2016) Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition. Eur J Oper Res 249:76–92

    Article  MathSciNet  Google Scholar 

  • Kim BS, Chung BD (2017) Affinely adjustable robust model for multiperiod production planning under uncertainty. IEEE Trans Eng Manag 64:505–514

    Article  Google Scholar 

  • Lima C, Relvas S, Barbosa-Pvoa A (2018) Stochastic programming approach for the optimal tactical planning of the downstream oil supply chain. Comput Chem Eng 108:314–336

    Article  Google Scholar 

  • Nduagu E, Sow A, Umeozor E, Millington D (2017) Economic potentials and efficiencies of oil sands operations: processes and technologies. Report, Canadian Energy Research Institute, Study No. 164

  • Pereira Almao P, Trujillo GL, Peluso E, Galarraga C, Sosa C, Scott Algara C, Lopez-linares F, Carbognani Ortega LA, Zerpa Reques NG (2017) Systems and methods for catalytic steam cracking of non-asphaltene containing heavy hydrocarbons. US Patent Number 9562199

  • Shabani N, Sowlati T (2016) A hybrid multi-stage stochastic programming-robust optimization model for maximizing the supply chain of a forest-based biomass power plant considering uncertainties. J Clean Prod 112:3285–3293

    Article  Google Scholar 

  • Shahandeh H, Motamed F, Li Z (2018) Expansion development planning of thermocracking-based bitumen upgrading plant under uncertainty. Comput Chem Eng 111:225–240

    Article  Google Scholar 

  • Zhou RJ, Li LJ (2016) Tactical capacity planning for semiconductor manufacturing: MILP models and scalable distributed parallel algorithms. AIChE J 62:3930–3946

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from Natural Sciences and Engineering Research Council (NSERC) and Alberta Innovates Technology Futures (AITF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zukui Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, deterministic counterpart derivation of the proposed hybrid models are explained. This includes the robust counterpart derivation of the semi-infinite constraints and the derivation of the expectation based objective function.

1.1 Deriving the robust counterpart for H1

Notice that in hybrid model 1, \(\xi = [\xi ^{\alpha _1},\ldots ,\xi ^{\alpha _6}, \xi ^{\beta _1},\ldots ,\xi ^{\beta _6}, \xi ^{\phi _1},\ldots ,\xi ^{\phi _6}, \xi ^{\gamma }]^\top\). In order to map the associated uncertainties of out of the general uncertainty vector \(\xi\), vector \(P^{\alpha _i}\), \(P^{\beta _i}\), \(P^{\phi _i}\), and \(P^{\gamma }\) can be used. For example, \(P^{\alpha _1}\) = [1,0,…,0] can be used to get \(\xi ^{\alpha _1}\) : \(\xi ^{\alpha _1}= P^{\alpha _1} \xi\).

1.1.1 Counterpart of constraint 3d

  1. 1.

    Introduce appropriate truncate matrices to generalize the uncertainties as \(\xi\), \(\sum _{i\in I} \overline{\beta }_i \cdot (1 + P^{\beta _i} \cdot \xi ) \cdot C_i \le \overline{\gamma } \cdot (1 + P^{\gamma } \cdot \xi )\).

  2. 2.

    Arrange the uncertain variables in left-hand-side and derive the robust counterpart, \(\Bigg \{\underset{\xi \in \varXi }{\text {max}} \quad \bigg [ \sum _{i\in I} \overline{\beta }_i \cdot P^{\beta _i} \cdot C_i - \overline{\gamma } \cdot P^{\gamma } \bigg ] \cdot \xi \Bigg \} \le \bigg [ \overline{\gamma } - \sum _{i\in I} \overline{\beta }_i \cdot C_i \bigg ].\)

  3. 3.

    Introduce the uncertainty set,

    $$\left\{ \begin{array}{cc} \max \quad \bigg [ \sum _{i\in I} \overline{\beta }_i \cdot P^{\beta _i} \cdot C_i - \overline{\gamma } \cdot P^{\gamma } \bigg ] \cdot \xi \\ s.t. \quad - W \cdot \xi \le - h \end{array} \right\} \le \bigg [ \overline{\gamma } - \sum _{i\in I} \overline{\beta }_i \cdot C_i \bigg ]$$
  4. 4.

    Introduce dual variable \(\varLambda ^d\) and apply duality to the inner LP problem,

    $$\left\{ \begin{array}{cc} \min \quad - h ^ T \cdot \varLambda ^d \\ s.t. \quad - W ^ T \cdot \varLambda ^d = \bigg [ \sum _{i\in I} \overline{\beta }_i \cdot P^{\beta _i} \cdot C_i - \overline{\gamma } \cdot P^{\gamma } \bigg ]^T \\ 0 \le \varLambda ^d \\ \end{array} \right\} \le \bigg [ \overline{\gamma } - \sum _{i\in I} \overline{\beta }_i \cdot C_i \bigg ]$$
  5. 5.

    Drop the min operator,

    $$\left\{ \begin{array} {lll} - h ^ T \cdot \varLambda ^d \le \bigg [ \overline{\gamma } - \sum _{i\in I} \overline{\beta }_i \cdot C_i \bigg ] \\ - W ^ T \cdot \varLambda ^d = \bigg [ \sum _{i\in I} \overline{\beta }_i \cdot P^{\beta _i} \cdot C_i - \overline{\gamma } \cdot P^{\gamma } \bigg ]^T \\ 0 \le \varLambda ^d \\ \end{array} \right.$$

1.1.2 Counterpart of constraint 3e

  1. 1.

    Introduce appropriate truncate matrices to generalize the uncertainties as \(\xi\), \(\sum _{i\in I} \overline{\beta }_i \cdot (1 + P^{\beta _i} \cdot \xi ) \cdot X_{i,s} \le \overline{\gamma } \cdot (1 + P^{\gamma } \cdot \xi ) ~ \quad \forall s \in {S}_{-1}\).

  2. 2.

    Arrange the uncertain variables in left-hand-side and derive the robust counterpart, \(\Bigg \{\underset{\xi \in \varXi }{\text {max}} \quad \bigg [ \sum _{i\in I} \overline{\beta }_i \cdot P^{\beta _i} \cdot X_{i,s} - \overline{\gamma } \cdot P^{\gamma } \bigg ] \cdot \xi \Bigg \} \le \bigg [ \overline{\gamma } - \sum _{i\in I} \overline{\beta }_i \cdot X_{i,s} \bigg ] ~ \quad \forall s \in {S}_{-1}\).

  3. 3.

    Introduce the uncertainty set,

    $$\left\{ \begin{array}{cc} \max \quad \bigg [ \sum _{i\in I} \overline{\beta }_i \cdot P^{\beta _i} \cdot X_{i,s} - \overline{\gamma } \cdot P^{\gamma } \bigg ] \cdot \xi \\ s.t. \quad - W \cdot \xi \le - h \end{array} \right\} \le \bigg [ \overline{\gamma } - \sum _{i\in I} \overline{\beta }_i \cdot X_{i,s} \bigg ] \quad \forall s \in {S}_{-1}$$
  4. 4.

    Introduce dual variable \(\varLambda ^e_s\) and apply duality to the inner LP problem,

    $$\begin{aligned}&\left\{ \begin{array}{cc} \min \quad - h ^ T \cdot \varLambda ^e_s \\ s.t. \quad - W ^ T \cdot \varLambda ^e_s = \bigg [ \sum _{i\in I} \overline{\beta }_i \cdot P^{\beta _i} \cdot X_{i,s} - \overline{\gamma } \cdot P^{\gamma } \bigg ]^T \\ 0 \le \varLambda ^e_s \\ \end{array} \right\} \\&\quad \le \bigg [ \overline{\gamma } - \sum _{i\in I} \overline{\beta }_i \cdot X_{i,s} \bigg ] \quad \forall s \in {S}_{-1} \end{aligned}$$
  5. 5.

    Drop the min operator,

    $$\left\{ \begin{array} {lll} - h ^ T \cdot \varLambda ^e_s \le \bigg [ \overline{\gamma } - \sum _{i\in I} \overline{\beta }_i \cdot X_{i,s} \bigg ] \quad \forall s \in {S}_{-1} \\ - W ^ T \cdot \varLambda ^e_s = \bigg [ \sum _{i\in I} \overline{\beta }_i \cdot P^{\beta _i} \cdot X_{i,s} - \overline{\gamma } \cdot P^{\gamma } \bigg ]^T \quad \forall s \in {S}_{-1} \\ 0 \le \varLambda ^e_s \quad \forall s \in {S}_{-1} \\ \end{array} \right.$$

1.1.3 Counterpart of constraint 3f

  1. 1.

    Introduce appropriate truncate matrices to generalize the uncertainties as \(\xi\), \(\varPhi \cdot \sum _{i\in I} (C_i + \sum _{s' \in P(s)} X_{i,s'}) \le \sum _{i\in I} \overline{\phi _i} \cdot (1 + P^{\phi _i} \cdot \xi ) \cdot (C_i + \sum _{s' \in P(s)} X_{i,s'}) ~ \quad \forall s \in {L}\).

  2. 2.

    Arrange the uncertain variables in left-hand-side and derive the robust counterpart, \(\Bigg \{\underset{\xi \in \varXi }{\text {max}} \quad \bigg [ - \sum _{i\in I} \overline{\phi _i} \cdot P^{\phi _i} \cdot (C_i + \sum _{s' \in P(s)} X_{i,s'}) \bigg ] \cdot \xi \Bigg \} \le \bigg [ \sum _{i\in I} \bigg ( \overline{\phi _i} \cdot (C_i + \sum _{s' \in P(s)} X_{i,s'}) - \varPhi \cdot (C_i + \sum _{s' \in P(s)} X_{i,s'}) \bigg ) \bigg ] ~ \quad \forall s \in {L}\).

  3. 3.

    Introduce the uncertainty set,

    $$\begin{aligned}&\left\{ \begin{array}{cc} \max \quad \bigg [ - \sum _{i\in I} \overline{\phi _i} \cdot P^{\phi _i} \cdot (C_i \\ + \sum _{s' \in P(s)} X_{i,s'}) \bigg ] \cdot \xi \\ s.t. \quad - W \cdot \xi \le - h \end{array} \right\} \nonumber \\&\quad \le \bigg [ \sum _{i\in I} \bigg ( \overline{\phi _i} \cdot (C_i + \sum _{s' \in P(s)} X_{i,s'}) - \varPhi \cdot (C_i + \sum _{s' \in P(s)} X_{i,s'}) \bigg ) \bigg ] \quad \forall s \in {L} \end{aligned}$$
  4. 4.

    Introduce dual variable \(\varLambda ^f_s\) and apply duality to the inner LP problem,

    $$\begin{aligned}&\left\{ \begin{array}{cc} \min \quad - h ^ T \cdot \varLambda ^f_s \\ s.t. \quad - W ^ T \cdot \varLambda ^f_s = \bigg [ - \sum _{i\in I} \overline{\phi _i} \cdot P^{\phi _i} \cdot (C_i \\ + \sum _{s' \in P(s)} X_{i,s'}) \bigg ]^T \\ 0 \le \varLambda ^f_s \\ \end{array} \right\} \nonumber \\&\quad \le \begin{array}{cc} \bigg [ \sum _{i\in I} \bigg ( \overline{\phi _i} \cdot (C_i + \sum _{s' \in P(s)} X_{i,s'}) \\ - \varPhi \cdot (C_i + \sum _{s' \in P(s)} X_{i,s'}) \bigg ) \bigg ] \end{array} \quad \forall s \in {L} \end{aligned}$$
  5. 5.

    Drop the min operator,

    $$\left\{ \begin{array} {lll} - h ^ T \cdot \varLambda ^f_s \le \bigg [ \sum _{i\in I} \bigg ( \overline{\phi _i} \cdot (C_i + \sum _{s' \in P(s)} X_{i,s'}) - \varPhi \cdot (C_i + \sum _{s' \in P(s)} X_{i,s'}) \bigg ) \bigg ] \quad \forall s \in {L} \\ - W ^ T \cdot \varLambda ^f_s = \bigg [ - \sum _{i\in I} \overline{\phi _i} \cdot P^{\phi _i} \cdot (C_i + \sum _{s' \in P(s)} X_{i,s'}) \bigg ]^T \quad \forall s \in {L} \\ 0 \le \varLambda ^f_s \quad \forall s \in {L} \\ \end{array} \right.$$

1.2 Deriving the robust counterpart for H2

Notice that in hybrid model 2, uncertainty vector is defined as \(\xi = [1,\xi ^{\nu _1},\ldots ,\xi ^{\nu _T}]^\top\). Vector \(P_t^{\nu }\) is used to simplify the expression \({\tilde{\nu }}_t = \sum _{t'=1}^t \xi ^{\nu _{t'}} = P_t^{\nu } \cdot \xi\). Matrix \(P_t\) is used to convert \(\xi\) to \(\xi _{[t]}\): \(\xi _{[t]} = P_t \cdot \xi\).

1.2.1 Counterpart of constraint 6b

  1. 1.

    Introduce appropriate truncate matrices to generalize the uncertainties as \(\xi\), \(P_t^{\nu } \cdot \xi \le \sum _i O_{i,t} \cdot P_{t} \cdot \xi ~ \quad \forall t \in {T}, \xi \in \varXi\).

  2. 2.

    Arrange the uncertain variables in left-hand-side and derive the robust counterpart, \(\Bigg \{\underset{\xi \in \varXi }{\text {max}} \quad (P_t^{\nu } - \sum _i O_{i,t} \cdot P_{t}) \cdot \xi \Bigg \} \le 0 ~ \quad \forall t \in {T}\).

  3. 3.

    Introduce the uncertainty set,

    $$\left\{ \begin{array}{cc} \max \quad \bigg [ P_t^{\nu } - \sum _i O_{i,t} \cdot P_{t} \bigg ] \cdot \xi \\ s.t. \quad - M \cdot \xi \le - l \end{array} \right\} \le 0 \quad \forall t \in {T}$$
  4. 4.

    Introduce dual variable \(\varPi ^b_t\) and apply duality to the inner LP problem,

    $$\left\{ \begin{array}{cc} \min \quad - l ^ T \cdot \varPi ^b_t \\ s.t. \quad - M ^ T \cdot \varPi ^b_t = \bigg [ P_t^{\nu } - \sum _i O_{i,t} \cdot P_{t} \bigg ]^T \\ 0 \le \varPi ^d_t \\ \end{array} \right\} \le 0 \quad \forall t \in {T}$$
  5. 5.

    Drop the min operator,

    $$\left\{ \begin{array} {lll} - l ^ T \cdot \varPi ^b_t \le 0 \quad \forall t \in {T} \\ - M ^ T \cdot \varPi ^b_t = \bigg [ P_t^{\nu } - \sum _i O_{i,t} \cdot P_{t} \bigg ]^T \quad \forall t \in {T} \\ 0 \le \varPi ^b_t \quad \forall t \in {T} \\ \end{array} \right.$$

1.2.2 Counterpart of constraint 6c

Part one:

  1. 1.

    Introduce appropriate truncate matrices to generalize the uncertainties as \(\xi\), \(0.75 \cdot (C_i + \sum _{t' \le t-1} X_{i,t'} \cdot P_{t'} \cdot \xi ) \le O_{i,t} \cdot P_t \cdot \xi ~ \quad \quad \forall i \in {I}, t \in {T}, \xi \in \varXi\).

  2. 2.

    Arrange the uncertain variables in left-hand-side and derive the robust counterpart, \(\Bigg \{\underset{\xi \in \varXi }{\text {max}} \quad \bigg [ 0.75 \cdot \sum _{t' \le t-1} (X_{i,t'} \cdot P_{t'}) - O_{i,t} \cdot P_t \bigg ] \cdot \xi \Bigg \} \le -0.75 \cdot C_i ~ \quad \forall i \in {I}, t \in {T}\).

  3. 3.

    Introduce the uncertainty set,

    $$\left\{ \begin{array}{cc} \max \quad \bigg [ 0.75 \cdot \sum _{t' \le t-1} (X_{i,t'} \cdot P_{t'}) - O_{i,t} \cdot P_t \bigg ] \cdot \xi \\ s.t. \quad - M \cdot \xi \le - l \end{array} \right\} \le -0.75 \cdot C_i \quad \forall i \in {I}, t \in {T}$$
  4. 4.

    Introduce dual variable \(\varPi ^{c_1}_{i,t}\) and apply duality to the inner LP problem,

    $$\begin{aligned}&\left\{ \begin{array}{cc} \min \quad - l ^ T \cdot \varPi ^{c_1}_{i,t} \\ s.t. \quad - M ^ T \cdot \varPi ^{c_1}_{i,t} = \bigg [ 0.75 \cdot \sum _{t' \le t-1} (X_{i,t'} \cdot P_{t'}) - O_{i,t} \cdot P_t \bigg ]^T \\ 0 \le \varPi ^{c_1}_{i,t} \\ \end{array} \right\} \quad \le -0.75 \cdot C_i \quad \forall i \in {I}, t \in {T} \end{aligned}$$
  5. 5.

    Drop the min operator,

    $$\left\{ \begin{array} {lll} - l ^ T \cdot \varPi ^{c_1}_{i,t} \le -0.75 \cdot C_i \quad \forall i \in {I}, t \in {T} \\ - M ^ T \cdot \varPi ^{c_1}_{i,t} = \bigg [ 0.75 \cdot \sum _{t' \le t-1} (X_{i,t'} \cdot P_{t'}) - O_{i,t} \cdot P_t \bigg ]^T \quad \forall i \in {I}, t \in {T} \\ 0 \le \varPi ^{c_1}_{i,t} \quad \forall i \in {I}, t \in {T} \\ \end{array} \right.$$

Part two:

  1. 1.

    Introduce appropriate truncate matrices to generalize the uncertainties as \(\xi\), \(O_{i,t} \cdot P_t \cdot \xi \le C_i + \sum _{t' \le t-1} X_{i,t'} \cdot P_{t'} \cdot \xi ~ \quad \quad \forall i \in {I}, t \in {T}, \xi \in \varXi\).

  2. 2.

    Arrange the uncertain variables in left-hand-side and derive the robust counterpart, \(\Bigg \{\underset{\xi \in \varXi }{\text {max}} \quad \bigg [ O_{i,t} \cdot P_t - \sum _{t' \le t-1} X_{i,t'} \cdot P_{t'} \bigg ] \cdot \xi \Bigg \} \le C_i ~ \quad \forall i \in {I}, t \in {T}\).

  3. 3.

    Introduce the uncertainty set,

    $$\left\{ \begin{array}{cc} \max \quad \bigg [ O_{i,t} \cdot P_t - \sum _{t' \le t-1} X_{i,t'} \cdot P_{t'} \bigg ] \cdot \xi \\ s.t. \quad - M \cdot \xi \le - l \end{array} \right\} \le C_i \quad \forall i \in {I}, t \in {T}$$
  4. 4.

    Introduce dual variable \(\varPi ^{c_2}_{i,t}\) and apply duality to the inner LP problem,

    $$\left\{ \begin{array}{cc} \min \quad - l ^ T \cdot \varPi ^{c_2}_{i,t} \\ s.t. \quad - M ^ T \cdot \varPi ^{c_2}_{i,t} = \bigg [ O_{i,t} \cdot P_t - \sum _{t' \le t-1} X_{i,t'} \cdot P_{t'} \bigg ]^T \\ 0 \le \varPi ^{c_2}_{i,t} \\ \end{array} \right\} \le C_i \quad \forall i \in {I}, t \in {T}$$
  5. 5.

    Drop the min operator,

    $$\left\{ \begin{array} {lll} - l ^ T \cdot \varPi ^{c_2}_{i,t} \le C_i \quad \forall i \in {I}, t \in {T} \\ - M ^ T \cdot \varPi ^{c_2}_{i,t} = \bigg [ O_{i,t} \cdot P_t - \sum _{t' \le t-1} X_{i,t'} \cdot P_{t'} \bigg ]^T \quad \forall i \in {I}, t \in {T} \\ 0 \le \varPi ^{c_2}_{i,t} \quad \forall i \in {I}, t \in {T} \\ \end{array} \right.$$

1.2.3 Counterpart of constraint 6e

  1. 1.

    Introduce appropriate truncate matrices to generalize the uncertainties as \(\xi\), \(\sum _{i\in I} \beta _{i,k} \cdot X_{i,t} \cdot P_t \cdot \xi \le \gamma _k ~ \quad \forall k \in {K}, t \in {T}, \xi \in \varXi\).

  2. 2.

    Arrange the uncertain variables in left-hand-side and derive the robust counterpart, \(\Bigg \{\underset{\xi \in \varXi }{\text {max}} \quad \bigg [ \sum _{i\in I} \beta _{i,k} \cdot X_{i,t} \cdot P_t \bigg ] \cdot \xi \Bigg \} \le \gamma _k ~ \quad \forall k \in {K}, t \in {T}, \xi \in \varXi\).

  3. 3.

    Introduce the uncertainty set,

    $$\left\{ \begin{array}{cc} \max \quad \bigg [ \sum _{i\in I} \beta _{i,k} \cdot X_{i,t} \cdot P_t ) \bigg ] \cdot \xi \\ s.t. \quad - M \cdot \xi \le - l \end{array} \right\} \le \gamma _k \quad \forall k \in {K}, t \in {T}$$
  4. 4.

    Introduce dual variable \(\varPi ^e_{k,t}\) and apply duality to the inner LP problem,

    $$\left\{ \begin{array}{cc} \min \quad - l ^ T \cdot \varPi ^e_{k,t} \\ s.t. \quad - M ^ T \cdot \varPi ^e_{k,t} = \bigg [ \sum _{i\in I} \beta _{i,k} \cdot X_{i,t} \cdot P_t \bigg ]^T \\ 0 \le \varPi ^e_{k,t} \\ \end{array} \right\} \le \gamma _k \quad \forall k \in {K}, t \in {T}$$
  5. 5.

    Drop the min operator,

    $$\left\{ \begin{array} {lll} - l ^ T \cdot \varPi ^e_{k,t} \le \gamma _k \quad \forall k \in {K}, t \in {T} \\ - M ^ T \cdot \varPi ^e_{k,t} = \bigg [ \sum _{i\in I} \beta _{i,k} \cdot X_{i,t} \cdot P_t \bigg ]^T \quad \forall t \in {T} \\ 0 \le \varPi ^e_{k,t} \quad \forall k \in {K}, t \in {T} \\ \end{array} \right.$$

1.2.4 Counterpart of constraint 6f

  1. 1.

    Introduce appropriate truncate matrices to generalize the uncertainties as \(\xi\), \(\varPhi \le \dfrac{ \sum _{i\in I} \phi _{i,k} \cdot (C_i + \sum _{t \in {T}} X_{i,t} \cdot P_t \cdot \xi )}{ \sum _{i\in I}( C_i + \sum _{t \in {T}} X_{i,t} \cdot P_t \cdot \xi )} ~ \quad \forall k \in {K}, \xi \in \varXi\).

  2. 2.

    Arrange the uncertain variables in left-hand-side and derive the robust counterpart, \(\Bigg \{\underset{\xi \in \varXi }{\text {max}} \quad \bigg [ \varPhi \cdot \sum _{i\in I} \sum _{t \in {T}} X_{i,t} \cdot P_t - \sum _{i\in I} \phi _{i,k} \cdot \sum _{t \in {T}} X_{i,t} \cdot P_t \bigg ] \cdot \xi \Bigg \} \le \sum _{i\in I} \phi _{i,k} \cdot C_i - \varPhi \cdot \sum _{i\in I} C_i ~ \quad \forall k \in {K}, \xi \in \varXi\).

  3. 3.

    Introduce the uncertainty set,

    $$\begin{aligned}&\left\{ \begin{array}{cc} \max \quad \bigg [ \varPhi \cdot \sum _{i\in I} \sum _{t \in {T}} X_{i,t} \cdot P_t - \sum _{i\in I} \phi _{i,k} \cdot \sum _{t \in {T}} X_{i,t} \cdot P_t \bigg ] \cdot \xi \\ s.t. \quad - M \cdot \xi \le - l \end{array} \right\} \\&\quad \le \sum _{i\in I} \phi _{i,k} \cdot C_i - \varPhi \cdot \sum _{i\in I} C_i \quad \forall k \in {K} \end{aligned}$$
  4. 4.

    Introduce dual variable \(\varPi ^f_k\) and apply duality to the inner LP problem,

    $$\left\{ \begin{array}{cc} \min \quad - l ^ T \cdot \varPi ^f_k \\ s.t. \quad - M ^ T \cdot \varPi ^f_k = \bigg [ \varPhi \cdot \sum _{i\in I} \sum _{t \in {T}} X_{i,t} \cdot P_t \\ - \sum _{i\in I} \phi _{i,k} \cdot \sum _{t \in {T}} X_{i,t} \cdot P_t \bigg ]^T \\ 0 \le \varPi ^f_k \\ \end{array} \right\} \le \sum _{i\in I} \phi _{i,k} \cdot C_i - \varPhi \cdot \sum _{i\in I} C_i \quad \forall k \in {K}$$
  5. 5.

    Drop the min operator,

    $$\left\{ \begin{array} {lll} - l ^ T \cdot \varPi ^f_k \le \sum _{i\in I} \phi _{i,k} \cdot C_i - \varPhi \cdot \sum _{i\in I} C_i \quad \forall k \in {K} \\ - M ^ T \cdot \varPi ^f_k = \bigg [ \varPhi \cdot \sum _{i\in I} \sum _{t \in {T}} X_{i,t} \cdot P_t - \sum _{i\in I} \phi _{i,k} \cdot \sum _{t \in {T}} X_{i,t} \cdot P_t \bigg ]^T \quad \forall k \in {K} \\ 0 \le \varPi ^f_k \quad \forall k \in {K} \\ \end{array} \right.$$

1.2.5 Counterpart of constraint 6h

Part one:

  1. 1.

    Introduce appropriate truncate matrices to generalize the uncertainties as \(\xi\), \(\underline{\varOmega } \cdot Y^X_{i,t} \le X_{i,t} \cdot P_t \cdot \xi ~ \quad \forall i \in {I}, t \in {T}, \xi \in \varXi\).

  2. 2.

    Arrange the uncertain variables in left-hand-side and derive the robust counterpart, \(\Bigg \{\underset{\xi \in \varXi }{\text {max}} \quad \bigg [ - X_{i,t} \cdot P_t \bigg ] \cdot \xi \Bigg \} \le - \underline{\varOmega } \cdot Y^X_{i,t} ~ \quad \forall i \in {I}, t \in {T}\).

  3. 3.

    Introduce the uncertainty set,

    $$\left\{ \begin{array}{cc} \max \quad \bigg [ - X_{i,t} \cdot P_t \bigg ] \cdot \xi \\ s.t. \quad - M \cdot \xi \le - l \end{array} \right\} \le - \underline{\varOmega } \cdot Y^X_{i,t} \quad \forall i \in {I}, t \in {T}$$
  4. 4.

    Introduce dual variable \(\varPi ^{h_1}_{i,t}\) and apply duality to the inner LP problem,

    $$\left\{ \begin{array}{cc} \min \quad - l ^ T \cdot \varPi ^{h_1}_{i,t} \\ s.t. \quad - M ^ T \cdot \varPi ^{h_1}_{i,t} = \bigg [ - X_{i,t} \cdot P_t \bigg ]^T \\ 0 \le \varPi ^{h_1}_{i,t} \\ \end{array} \right\} \le - \underline{\varOmega } \cdot Y^X_{i,t} \quad \forall i \in {I}, t \in {T}$$
  5. 5.

    Drop the min operator,

    $$\left\{ \begin{array} {lll} - l ^ T \cdot \varPi ^{h_1}_{i,t} \le - \underline{\varOmega } \cdot Y^X_{i,t} \quad \forall i \in {I}, t \in {T} \\ - M ^ T \cdot \varPi ^{h_1}_{i,t} = \bigg [ - X_{i,t} \cdot P_t \bigg ]^T \quad \forall i \in {I}, t \in {T} \\ 0 \le \varPi ^{h_1}_{i,t} \quad \forall i \in {I}, t \in {T} \\ \end{array} \right.$$

Part two:

  1. 1.

    Introduce appropriate truncate matrices to generalize the uncertainties as \(\xi\), \(X_{i,t} \cdot P_t \cdot \xi \le \overline{\varOmega } \cdot Y^X_{i,t} ~ \quad \forall i \in {I}, t \in {T}, \xi \in \varXi\).

  2. 2.

    Arrange the uncertain variables in left-hand-side and derive the robust counterpart, \(\Bigg \{\underset{\xi \in \varXi }{\text {max}} \quad \bigg [ X_{i,t} \cdot P_t \bigg ] \cdot \xi \Bigg \} \le \overline{\varOmega } \cdot Y^X_{i,t} ~ \quad \forall i \in {I}, t \in {T}\).

  3. 3.

    Introduce the uncertainty set,

    $$\left\{ \begin{array}{cc} \max \quad \bigg [ X_{i,t} \cdot P_t \bigg ] \cdot \xi \\ s.t. \quad - M \cdot \xi \le - l \end{array} \right\} \le \overline{\varOmega } \cdot Y^X_{i,t} \quad \forall i \in {I}, t \in {T}$$
  4. 4.

    Introduce dual variable \(\varPi ^{h_2}_{i,t}\) and apply duality to the inner LP problem,

    $$\left\{ \begin{array}{cc} \min \quad - l ^ T \cdot \varPi ^{h_2}_{i,t} \\ s.t. \quad - M ^ T \cdot \varPi ^{h_2}_{i,t} = \bigg [ X_{i,t} \cdot P_t \bigg ]^T \\ 0 \le \varPi ^{h_2}_{i,t} \\ \end{array} \right\} \le \overline{\varOmega } \cdot Y^X_{i,t} \quad \forall i \in {I}, t \in {T}$$
  5. 5.

    Drop the min operator,

    $$\left\{ \begin{array} {lll} - l ^ T \cdot \varPi ^{h_2}_{i,t} \le \overline{\varOmega } \cdot Y^X_{i,t} \quad \forall i \in {I}, t \in {T} \\ - M ^ T \cdot \varPi ^{h_2}_{i,t} = \bigg [ X_{i,t} \cdot P_t \bigg ]^T \quad \forall i \in {I}, t \in {T} \\ 0 \le \varPi ^{h_2}_{i,t} \quad \forall i \in {I}, t \in {T} \\ \end{array} \right.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahandeh, H., Motamed Nasab, F. & Li, Z. Multistage stochastic capacity planning of partially upgraded bitumen production with hybrid solution method. Optim Eng 20, 1193–1226 (2019). https://doi.org/10.1007/s11081-019-09426-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-019-09426-5

Keywords

Navigation