Skip to main content
Log in

Petroleum refinery optimization

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

In the face of lower margins, stiffer competition, and ever more stringent product and environmental specifications, petroleum refineries have increasingly relied on optimization approaches to maintain their survival and competitive edge. In this paper, we present a comprehensive overview of the current state of the art role of optimization methods in refineries for wide-ranging multiscale applications and activities spanning the traditional planning linear programming to supply chain that extends to outside-the-fence considerations. The paper aims to provide an integrated treatment of techniques and tools, and a survey of representative work in the burgeoning literature of this field with an emphasis on comparisons between industrial practices and academic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Sources include Aspen Technology 2011b)

Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APC:

Advanced process control

CDU:

Crude distillation unit

DRTO:

Dynamic real-time optimization

EMPC:

Economic model predictive control

FCC:

Fluid catalytic cracking

LP:

Linear programming

MILP:

Mixed-integer linear programming

MINLP:

Mixed-integer nonlinear programming

MPC:

Model predictive control

NLP:

Nonlinear programming

RLT:

Reformulation–linearization technique

RTO:

Real-time optimization

References

  • Adams J, Biroli S (2002) Benefits of the FCC RTO to AgipPetroli. Paper presented at the Aspenworld conference 2002

  • Adhitya A, Srinivasan R, Karimi IA (2007a) Heuristic rescheduling of crude oil operations to manage abnormal supply chain events. AIChE J 53:397–422. doi:10.1002/Aic.11069

    Article  Google Scholar 

  • Adhitya A, Srinivasan R, Karimi IA (2007b) A model-based rescheduling framework for managing abnormal supply chain events. Comput Chem Eng 31:496–518. doi:10.1016/j.compchemeng.2006.07.002

    Article  Google Scholar 

  • Adhya N, Tawarmalani M, Sahinidis NV (1999) A Lagrangian approach to the pooling problem. Ind Eng Chem Res 38:1956–1972

    Article  Google Scholar 

  • Akrotirianakis IG, Floudas CA (2004) Computational experience with a new class of convex underestimators: box-constrained NLP problems. J Glob Optim 29:249–264

    Article  MATH  MathSciNet  Google Scholar 

  • Akrotirianakis IG, Floudas CA (2005) A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J Glob Optim 30:367–390

    Article  MATH  MathSciNet  Google Scholar 

  • Alattas AM, Grossmann IE, Palou-Rivera I (2011) Integration of nonlinear crude distillation unit models in refinery planning optimization. Ind Eng Chem Res 50:6860–6870. doi:10.1021/Ie200151e

    Article  Google Scholar 

  • Alattas AM, Grossmann IE, Palou-Rivera I (2012) Refinery production planning: multiperiod MINLP with nonlinear CDU model. Ind Eng Chem Res 51:12852–12861. doi:10.1021/Ie3002638

    Article  Google Scholar 

  • AllBusiness (2013) Invensys and ChevronTexaco sign marketing agreement for PETRO refinery planning system. http://www.allbusiness.com/company-activities-management/management-benchmarking/5921349-1.html. Accessed 12 July 2013

  • Al-Qahtani K, Elkamel A (2010) Robust planning of multisite refinery networks: optimization under uncertainty. Comput Chem Eng 34:985–995. doi:10.1016/j.compchemeng.2010.02.032

    Article  Google Scholar 

  • Aspen Technology (2005) aspenONE planning, scheduling and blending for petroleum. http://www.aspentech.com/brochures/psb%20brochure.pdf

  • Aspen Technology (2011a) Aspen Custom Modeler®. http://www.aspentech.com/products/aspen-custom-modeler.aspx

  • Aspen Technology I (2011b) Aspen InfoPlus.21® family. https://www.aspentech.com/products/aspen-infoplus21/

  • Aspen Technology I (2011c) Aspen PIMS™ family 4.0: advanced planning, scheduling, and blending. http://www.aspentech.com/brochures/aspen_pims_family.pdf

  • Aspen Technology I (2012a) Aspen FCC: a simulation system for monitoring, planning and optimizing fluid catalytic cracking units. http://www.aspentech.com/brochures/fcc.pdf. Accessed 15 Apr 2013

  • Aspen Technology I (2012b) Aspen refinery multi-blend optimizer. http://www.aspentech.com/products/aspen-mbo.cfm. Accessed 18 May 2012

  • Aspen Technology I (2013a) Aspen DMCplus-AspenTech. http://www.aspentech.com/products/aspen-dmcplus/. Accessed 8 Aug 2013

  • Aspen Technology I (2013b) Aspen fleet optimizer. http://www.aspentech.com/core/aspen-retail.aspx. Accessed 10 May 2013

  • Aspen Technology I (2013c) Aspen petroleum scheduler. http://www.aspentech.com/products/aspen-orion-xt.cfm. Accessed 10 May 2013

  • Aspen Technology I (2013d) Aspen petroleum supply chain planner. http://www.aspentech.com/products/aspen-distribution-planning-optimization.aspx. Accessed 24 Apr 2013

  • Aspen Technology I (2013e) Aspen PIMS and Aspen PIMS-AO. http://www.aspentech.com/brochures/aspen_pims_ao.pdf. Accessed 15 Aug 2013

  • Barbaro A, Bagajewicz MJ (2004) Managing financial risk in planning under uncertainty. AIChE J 50:963–989. doi:10.1002/Aic.10094

    Article  Google Scholar 

  • Belotti P, Kirches C, Leyffer S, Linderoth J, Luedtke J, Mahajan A (2013) Mixed-integer nonlinear optimization. Acta Numer 22:1–131. doi:10.1017/s0962492913000032

    Article  MATH  MathSciNet  Google Scholar 

  • Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numer Math 4:238–252. doi:10.1007/bf01386316

    Article  MATH  MathSciNet  Google Scholar 

  • Bodington CE, Baker TE (1990) A history of mathematical-programming in the petroleum-industry. Interfaces 20:117–127. doi:10.1287/inte.20.4.117

    Article  Google Scholar 

  • Bonner, Moore I (1979) Refinery and petrochemical modeling system (RPMS): a system description. Bonner & Moore Management Science, Houston

    Google Scholar 

  • Centre for Process Integration UoM (2013) REFOPT. http://www.ceas.manchester.ac.uk/media/eps/schoolofchemicalengineeringandanalyticalscience/content/researchall/centres/processintegration/REFORT.pdf. Accessed 7 Aug 2013

  • Charnes A, Cooper WW, Mellon B (1952) Blending aviation gasoline—a study in programming interdependent activities in an integrated oil company. Econometrica 20:135–139

    Article  Google Scholar 

  • Chen X, Grossmann I, Zheng L (2012) A comparative study of continuous-time models for scheduling of crude oil operations in inland refineries. Comput Chem Eng 44:141–167

    Article  Google Scholar 

  • Cutler CR, Ramaker BL (1979) DMC—a computer control algorithm. Paper presented at the AIChE 1979 Houston meeting, Houston

  • Cutler CR, Ramaker BL (1980) Dynamic matrix control—a computer control algorithm. Paper presented at the joint automatic control conference preprints, San Francisco

  • Daichendt MM, Grossmann IE (1998) Integration of hierarchical decomposition and mathematical programming for the synthesis of process flowsheets. Comput Chem Eng 22:147–175. doi:10.1016/S0098-1354(97)88451-7

    Article  Google Scholar 

  • Darby ML, Nikolaou M (2012) MPC: current practice and challenges. Control Eng Pract 20:328–342

    Article  Google Scholar 

  • Darby ML, Nikolaou M, Jones J, Nicholson D (2011) RTO: an overview and assessment of current practice. J Process Control 21:874–884. doi:10.1016/j.jprocont.2011.03.009

    Article  Google Scholar 

  • Dewitt CW, Lasdon LS, Waren AD, Brenner DA, Melhem SA (1989) OMEGA: an improved gasoline blending system for texaco. Interfaces 19:85–101

    Article  Google Scholar 

  • Elkamel A, Ba-Shammakh M, Douglas P, Croiset E (2008) An optimization approach for integrating planning and CO2 emission reduction in the petroleum refining industry. Ind Eng Chem Res 47:760–776. doi:10.1021/ie070426n

    Article  Google Scholar 

  • Engell S (2007) Feedback control for optimal process operation. J Process Contr 17:203–219. doi:10.1016/j.jprocont.2006.10.011

    Article  Google Scholar 

  • Escudero LF, Quintana FJ, Salmeron J (1999) CORO, a modeling and an algorithmic framework for oil supply, transformation and distribution optimization under uncertainty. Eur J Oper Res 114:638–656. doi:10.1016/S0377-2217(98)00261-6

    Article  MATH  Google Scholar 

  • Fatora F, Adams J (1998) CLRTO at Lyondell-Citgo Refining. Paper presented at the AspenTech advanced control and optimization users group meeting 1998

  • Fernandes LJ, Relvas S, Barbosa-Póvoa AP (2013) Strategic network design of downstream petroleum supply chains: single versus multi-entity participation. Chem Eng Res Des 91:1557–1587. doi:10.1016/j.cherd.2013.05.028

    Article  Google Scholar 

  • Floudas CA, Lin X (2004) Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review. Comput Chem Eng 28:2109–2129

    Article  Google Scholar 

  • Furman KC, Jia Z, Ierapetritou MG (2007) A robust event-based continuous time formulation for tank transfer scheduling. Ind Eng Chem Res 46:9126–9136. doi:10.1021/Ie061516f

    Article  Google Scholar 

  • Garvin WW, Crandall HW, John JB, Spellmann RA (1957) Applications of linear programming in the oil industry. Manag Sci 3:407–430

    Article  MATH  MathSciNet  Google Scholar 

  • Glismann K, Gruhn G (2001) Short-term scheduling and recipe optimization of blending processes. Comput Chem Eng 25:627–634

    Article  Google Scholar 

  • Gothe-Lundgren M, Lundgren JT, Persson JA (2002) An optimization model for refinery production scheduling. Int J Prod Econ 78:255–270. doi:10.1016/S0925-5273(00)00162-6

    Article  Google Scholar 

  • Guerra OJ, Le Roux GAC (2011) Improvements in petroleum refinery planning: 1. Formulation of process models. Ind Eng Chem Res 50:13403–13418. doi:10.1021/Ie200303m

    Article  Google Scholar 

  • Hamisu AA, Kabantiok S, Wang M (2013) Refinery scheduling of crude oil unloading with tank inventory management. Comput Chem Eng 55:134–147

    Article  Google Scholar 

  • Hart WD (1978) L.P. Behavior—recursion example comments. ACM SIGMAP Bull 25:29–32

  • Haverly CA (1978) Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bull 25:19–28

    Article  Google Scholar 

  • Haverly CA (1979) Behavior of recursion model-more studies. ACM SIGMAP Bull 26:22–28

    Article  Google Scholar 

  • Haverly CA (1980) Recursion model behavior: more studies. ACM SIGMAP Bull 28:39–41

    Article  Google Scholar 

  • Haverly CA (2001) OMNI model management system. Ann Oper Res 104:127–140

    Article  MATH  MathSciNet  Google Scholar 

  • Haverly Systems (2012) GRTMPS (G4). http://www.haverly.com/main-products/13-products/9-grtmps. Accessed 9 May 2012

  • Haverly Systems (2013a) Haverly products. http://www.haverly.com/product.htm. Accessed 11 July 2013

  • Haverly Systems (2013b) OmniSuite® Product Page. http://www.haverly.com/OmniSuite.htm. Accessed 10 July 2013

  • Hofferl F, Steinschorn D (2009) A dynamic programming extension to the steady state refinery-LP. Eur J Oper Res 197:465–474. doi:10.1016/j.ejor.2008.07.008

    Article  MATH  Google Scholar 

  • Hooker J (2005) A hybrid method for the planning and scheduling. Constraints 10:385–401. doi:10.1007/s10601-005-2812-2

    Article  MATH  MathSciNet  Google Scholar 

  • Hooker JN, Yan H, Grossmann IE, Raman R (1994) Logic cuts for processing networks with fixed charges. Comput Oper Res 21:265–279. doi:10.1016/0305-0548(94)90089-2

    Article  MATH  Google Scholar 

  • Iancu M, Cristea MV, Agachi PS (2013) Retrofit design of heat exchanger network of a fluid catalytic cracking plant and control based on MPC. Comput Chem Eng 49:205–216. doi:10.1016/j.compchemeng.2012.11.001

    Article  Google Scholar 

  • Industrial Algorithms (2016) IMPL (industrial modeling and programming language). http://www.industrialgorithms.com/

  • Ingenious (2016a) ProPlan 5.0: refinery and petrochemical planning software. http://www.ingeniousinc.com/proplan.aspx

  • Ingenious (2016b) ProSched 5.0: refinery and petrochemical scheduling software. http://www.ingeniousinc.com/prosched.aspx

  • Jain V, Grossmann IE (2001) Algorithms for hybrid MILP/CP models for a class of optimization problems. Informs J Comput 13:258–276. doi:10.1287/ijoc.13.4.258.9733

    Article  MATH  MathSciNet  Google Scholar 

  • Jia ZY, Ierapetritou M (2003) Mixed-integer linear programming model for gasoline blending and distribution scheduling. Ind Eng Chem Res 42:825–835. doi:10.1021/Ie0204843

    Article  Google Scholar 

  • Jia ZY, Ierapetritou M (2004) Efficient short-term scheduling of refinery operations based on a continuous time formulation. Comput Chem Eng 28:1001–1019

    Article  Google Scholar 

  • Jia ZY, Ierapetritou M, Kelly JD (2003) Refinery short-term scheduling using continuous time formulation: crude-oil operations. Ind Eng Chem Res 42:3085–3097. doi:10.1021/Ie020124f

    Article  Google Scholar 

  • Joffe B, Kunt T, Varvarezos DK, Paules GE (2005a) PIMS advanced optimization technology. In: PIMS users conference, Madrid

  • Joffe B, Varvarezos D, Paules G, Kunt T, Floudas CA (2005b) Global optimization in refinery planning. In: AIChE annual meeting and fall showcase, Cincinnati, Ohio, 30 October–4 November 2005, p 7339

  • Joly M, Pinto J (2003) Mixed-integer programming techniques for the scheduling of fuel oil and asphalt production. Trans IChemE Part A 81:427–447

    Article  Google Scholar 

  • Joly M, Moro LFL, Pinto JM (2002) Planning and scheduling for petroleum refineries using mathematical programming. Braz J Chem Eng 19:207–228

    Article  Google Scholar 

  • Jones C, Baker TE (1996) MIMI/G: a graphical environment for mathematical programming and modeling. Interfaces 26:90–106. doi:10.1287/Inte.26.3.90

    Article  Google Scholar 

  • Kadam JV, Marquardt W (2007) Integration of economical optimization and control for intentionally transient process operation. Lecture notes in control and information sciences, vol 358, pp 419–434

  • Karuppiah R, Furman KC, Grossmann IE (2008) Global optimization for scheduling refinery crude oil operations. Comput Chem Eng 32:2745–2766. doi:10.1016/j.compchemeng.2007.11.008

    Article  Google Scholar 

  • KBC Advanced Technologies (2013a) FCC-SIM. http://www.kbcat.com/sim-suite-models/fcc-sim. Accessed 15 Apr 2013

  • KBC Advanced Technologies (2013b) Petro-SIM refining-KBC advanced technologies. http://www.kbcat.com/process-simulation-software/petro-sim-refining. Accessed 12 Aug 2013

  • Kelly JD, Mann JL (2003a) Crude oil blend scheduling optimization: an application with multimillion dollar benefits - Part 1 - The ability to schedule the crude oil blendshop more effectively provides substantial downstream benefits. Hydrocarb Process 82:47–53

    Google Scholar 

  • Kelly JD, Mann JL (2003b) Crude oil blend scheduling optimization: an application with multimillion dollar benefits - Part 2 - The ability to schedule the crude oil blendshop more effectively provides substantial downstream benefits. Hydrocarb Process 82:72–79

    Google Scholar 

  • Khor CS (2010) Stochastic programming with tractable mean-risk objectives for planning under uncertainty. J Appl Sci 10:2618–2622

    Article  Google Scholar 

  • Khor CS, Elkamel A (2010) Superstructure optimization for oil refinery design. Pet Sci Technol 28:1457–1465

    Article  Google Scholar 

  • Khor CS, Elkamel A (2013) Roles of computers in petroleum refineries. In: Riazi MR, Eser S, Diez JLP, Agrawal SS (eds) Handbook of petroleum refining and natural gas processing, vol 58. ASTM International, Conshohocken, pp 685–700

    Chapter  Google Scholar 

  • Khor CS, Elkamel A, Douglas PL (2008a) Stochastic refinery planning with risk management. Pet Sci Technol 26:1726–1740. doi:10.1080/10916460701287813

    Article  Google Scholar 

  • Khor CS, Elkamel A, Ponnambalam K, Douglas PL (2008b) Two-stage stochastic programming with fixed recourse via scenario planning with economic and operational risk management for petroleum refinery planning under uncertainty. Chem Eng Process 47:1744–1764. doi:10.1016/j.cep.2007.09.016

    Article  Google Scholar 

  • Khor CS, Yeoh XQ, Shah N (2010) Optimal design of petroleum refinery topology using a discrete optimization approach with logical constraints. J Appl Sci 10:2618–2622

    Article  Google Scholar 

  • Kocis GR, Grossmann IE (1989) A modeling and decomposition strategy for the minlp optimization of process flowsheets. Comput Chem Eng 13:797–819. doi:10.1016/0098-1354(89)85053-7

    Article  Google Scholar 

  • Kong M-T (2002) Downstream oil products supply chain optimisation. Imperial College, London

    Google Scholar 

  • Kong M-T, Shah N (2001) Preprocessing rules for integer programming solutions to the generalised assignment problem. J Oper Res Soc 52:567–575. doi:10.1038/sj.jors.2601111

    Article  MATH  Google Scholar 

  • Koo LY, Adhitya A, Srinivasan R, Karimi IA (2008) Decision support for integrated refinery supply chains part 2. Design and operation. Comput Chem Eng 32:2787–2800. doi:10.1016/j.compchemeng.2007.11.007

    Article  Google Scholar 

  • Kunt T, Grupa M, Varvarezos DK (2008) Integrating refinery production planning with primary and secondary distribution network optimization. Paper presented at the 5th international conference on foundations of computer-aided process operations (FOCAPO 2008), Massachusetts, USA

  • Lasdon L, Joffe B (1990) The relationship between distributive recursion and successive linear programming in refining production planning models. In: National Petroleum Refiners Association (NPRA) computer conference, Seattle, Washington

  • Lee HM, Pinto JM, Grossmann IE, Park S (1996) Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management. Ind Eng Chem Res 35:1630–1641

    Article  Google Scholar 

  • Li J, Karimi IA (2011) Scheduling gasoline blending operations from recipe determination to shipping using unit slots. Ind Eng Chem Res 50:9156–9174. doi:10.1021/Ie102321b

    Article  Google Scholar 

  • Li WK, Hui CW, Hua B, Tong ZX (2002) Scheduling crude oil unloading, storage, and processing. Ind Eng Chem Res 41:6723–6734. doi:10.1021/Ie020130b

    Article  Google Scholar 

  • Li WK, Hui CW, Li P, Li AX (2004) Refinery planning under uncertainty. Ind Eng Chem Res 43:6742–6755. doi:10.1021/Ie049737d

    Article  Google Scholar 

  • Li WK, Hui CW, Li AX (2005) Integrating CDU, FCC and product blending models into refinery planning. Comput Chem Eng 29:2010–2028. doi:10.1016/j.compchemeng.2005.05.010

    Article  Google Scholar 

  • Li J, Li W, Karimi IA, Srinivasan R (2007a) Improving the robustness and efficiency of crude scheduling algorithms. AIChE J 53:2659–2680. doi:10.1002/Aic.11280

    Article  Google Scholar 

  • Li WK, Hui CW, Karimi IA, Srinivasan R (2007b) A novel CDU model for refinery planning. Asia Pac J Chem Eng 2:282–293. doi:10.1002/Apj.20

    Article  Google Scholar 

  • Li J, Karimi IA, Srinivasan R (2010) Recipe determination and scheduling of gasoline blending operations. AIChE J 56:441–465. doi:10.1002/Aic.11970

    Google Scholar 

  • Li J, Misener R, Floudas CA (2012a) Continuous-time modeling and global optimization approach for scheduling of crude oil operations. AIChE J 58:205–226. doi:10.1002/Aic.12623

    Article  Google Scholar 

  • Li J, Misener R, Floudas CA (2012b) Scheduling of crude oil operations under demand uncertainty: a robust optimization framework coupled with global optimization. AIChE J 58:2373–2396. doi:10.1002/Aic.12772

    Article  Google Scholar 

  • Magalhães MV, Shah N (2003) Crude oil scheduling. Paper presented at the FOCAPO

  • Mahalec V, Marlin T (2006) Real-time economic optimization (RTO) of process operations: the long road to a commercial success. Paper presented at the Canadian society of chemical engineers

  • Manne A (1956) Scheduling of petroleum refinery operations, vol 48. Harvard University Press, Harvard Economic Studies, Cambridge

    Google Scholar 

  • Manne A (1958) A linear programming model of the US petroleum refining industry. Econometrica 26:67–106

    Article  Google Scholar 

  • Maravelias CT, Grossmann IE (2004) A hybrid MILP/CP decomposition approach for the continuous time scheduling of multipurpose batch plants. Comput Chem Eng 28:1921–1949. doi:10.1016/j.compchemeng.2004.03.016

    Article  Google Scholar 

  • Mendez CA, Grossmann IE, Harjunkoski I, Kabore P (2006) A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations. Comput Chem Eng 30:614–634. doi:10.1016/j.compchemeng.2005.11.004

    Article  Google Scholar 

  • Menezes BC, Kelly JD, Grossmann IE, Vazacopoulos A (2015) Generalized capital investment planning of oil-refineries using MILP and sequence-dependent setups. Comput Chem Eng 80:140–154. doi:10.1016/j.compchemeng.2015.05.013

    Article  Google Scholar 

  • Meyer CA, Floudas CA (2006) Global optimization of a combinatorially complex generalized pooling problem. AIChE J 52:1027–1037. doi:10.1002/Aic.10717

    Article  Google Scholar 

  • Misener R, Floudas CA (2014) ANTIGONE: algorithms for coNTinuous/integer global optimization of nonlinear equations. J Glob Optim 59:503–526

    Article  MATH  MathSciNet  Google Scholar 

  • Moro LFL, Pinto JM (2004) Mixed-integer programming approach for short-term crude oil scheduling. Ind Eng Chem Res 43:85–94. doi:10.1021/Ie030348d

    Article  Google Scholar 

  • Moro LFL, Zanin AC, Pinto JM (1998) A planning model for refinery diesel production. Comput Chem Eng 22:S1039–S1042

    Article  Google Scholar 

  • Mouret S, Grossmann IE, Pestiaux P (2009) A novel priority-slot based continuous-time formulation for crude-oil scheduling problems. Ind Eng Chem Res 48:8515–8528. doi:10.1021/Ie8019592

    Article  Google Scholar 

  • Mouret S, Grossmann IE, Pestiaux P (2011) A new Lagrangian decomposition approach applied to the integration of refinery planning and crude-oil scheduling. Comput Chem Eng 35:2750–2766. doi:10.1016/j.compchemeng.2011.03.026

    Article  Google Scholar 

  • Mudt DR, Pedersen CC, Jett MD, Karur S, McIntyre B, Robinson PR (2006) Refinery-wide optimization with rigorous models. In: Hsu CS, Robinson PR (eds) Practical advances in petroleum processing, vol 2. Springer, New York, pp 371–392

    Google Scholar 

  • Mulvey JM, Vanderbei RJ, Zenios SA (1995) Robust optimization of large-scale systems. Oper Res 43:264–281

    Article  MATH  MathSciNet  Google Scholar 

  • Neiro SMS, Pinto JM (2004) A general modeling framework for the operational planning of petroleum supply chains. Comput Chem Eng 28:871–896. doi:10.1016/j.compchemeng.2003.09.018

    Article  Google Scholar 

  • Neiro SMS, Pinto JM (2005) Multiperiod optimization for production planning of petroleum refineries. Chem Eng Commun 192:62–88. doi:10.1080/00986440590473155

    Article  Google Scholar 

  • Niederberger J, Zech IA, Silva JAD, Mizutani FT, Aires JSDS (2005) PETROX—PETROBRAS’ process simulator. Paper presented at the 2nd mercosur congress on chemical engineering and 4th mercosur congress on process systems engineering, Rio de Janeiro

  • Palmer KH, Boudwin NK, Patton HA, Sammes JD, Rowland AJ, Smith DM (1984) A model-management framework for mathematical programming. Wiley, New York

    MATH  Google Scholar 

  • Pantelides CC, Renfro JG (2013) The online use of first-principles models in process operations: review, current status and future needs. Comput Chem Eng 51:136–148

    Article  Google Scholar 

  • Park J, Park S, Yun C, Kim Y (2010) Integrated model for financial risk management in refinery planning. Ind Eng Chem Res 49:374–380. doi:10.1021/Ie9000713

    Article  Google Scholar 

  • Pedersen CC, Mudt DR, Bailey JK, Ayala JS (1995) Closed loop real time optimization of a hydrocracker complex. In: National petroleum refiners association (npra) computer conference CC-95-121, Nashville, Tennessee, 6–8 Nov 1995

  • Persson JA, Gothe-Lundgren M (2005) Shipment planning at oil refineries using column generation and valid inequalities. Eur J Oper Res 163:631–652. doi:10.1016/j.ejor.2004.02.008

    Article  MATH  Google Scholar 

  • Pinto JM, Grossmann IE (1995) A continuous time mixed integer linear programming model for short term scheduling of multistage batch plants. Ind Eng Chem Res 34:3037–3051

    Article  Google Scholar 

  • Pinto JM, Joly M, Moro LFL (2000) Planning and scheduling models for refinery operations. Comput Chem Eng 24:2259–2276

    Article  Google Scholar 

  • Pitty SS, Li WK, Adhitya A, Srinivasan R, Karimi IA (2008) Decision support for integrated refinery supply chains part 1. Dynamic simulation. Comput Chem Eng 32:2767–2786. doi:10.1016/j.compchemeng.2007.11.006

    Article  Google Scholar 

  • Pongsakdi A, Rangsunvigit P, Siemanond K, Bagajewicz MJ (2006) Financial risk management in the planning of refinery operations. Int J Prod Econ 103:64–86. doi:10.1016/j.ijpe.2005.04.007

    Article  Google Scholar 

  • Pontes KV, Wolf IJ, Embiruçu M, Marquardt W (2015) Dynamic real-time optimization of industrial polymerization processes with fast dynamics. Ind Eng Chem Res 54:11881–11893

    Article  Google Scholar 

  • PRINCEPS (2016a) Flowers refinery scheduling solution. http://www.princeps.com/refinery-scheduling-solution/

  • PRINCEPS (2016b) PrincepsLP refinery planning solution. http://www.princeps.com/refinery-planning-solution/

  • Quesada I, Grossmann IE (1995) Global optimization of bilinear process networks with multicomponent flows. Comput Chem Eng 19:1219–1242

    Article  Google Scholar 

  • Raman R, Grossmann IE (1994) Modeling and computational techniques for logic-based integer programming. Comput Chem Eng 18:563–578. doi:10.1016/0098-1354(93)E0010-7

    Article  Google Scholar 

  • Reddy CPP, Karimi IA, Srinivasan R (2004a) A new continuous-time formulation for scheduling crude oil operations. Chem Eng Sci 59:1325–1341. doi:10.1016/j.ces.2004.01.009

    Article  Google Scholar 

  • Reddy PCP, Karimi IA, Srinivasan R (2004b) Novel solution approach for optimizing crude oil operations. AIChE J 50:1177–1197

    Article  Google Scholar 

  • Rigby B, Lasdon LS, Waren AD (1995) The evolution of Texaco’s blending systems: from OMEGA to Starblend. Interfaces 25:64–83

    Article  Google Scholar 

  • Rocha R, Grossmann IE, de Aragao MVSP (2009) Petroleum allocation at PETROBRAS: mathematical model and a solution algorithm. Comput Chem Eng 33:2123–2133. doi:10.1016/j.compchemeng.2009.06.017

    Article  Google Scholar 

  • Saharidis GKD, Ierapetritou MG (2009) Scheduling of loading and unloading of crude oil in a refinery with optimal mixture preparation. Ind Eng Chem Res 48:2624–2633. doi:10.1021/Ie801155w

    Article  Google Scholar 

  • Saharidis GKD, Minoux M, Dallery Y (2009) Scheduling of loading and unloading of crude oil in a refinery using event-based discrete time formulation. Comput Chem Eng 33:1413–1426. doi:10.1016/j.compchemeng.2009.02.005

    Article  Google Scholar 

  • Sear TN (1993) Logistics planning in the downstream oil industry. J Oper Res Soc 44:9–17

    Article  Google Scholar 

  • Shah N (1996) Mathematical programming techniques for crude oil scheduling. Comput Chem Eng 20:S1227–S1232

    Article  Google Scholar 

  • Shah NK, Ierapetritou MG (2011) Short-term scheduling of a large-scale oil-refinery operations: incorporating logistics details. AIChE J 57:1570–1584. doi:10.1002/Aic.12359

    Article  Google Scholar 

  • Shah N, Saharidis GKD, Jia ZY, Ierapetritou MG (2009) Centralized-decentralized optimization for refinery scheduling. Comput Chem Eng 33:2091–2105. doi:10.1016/j.compchemeng.2009.06.010

    Article  Google Scholar 

  • Shah NK, Li ZK, Ierapetritou MG (2011) Petroleum refining operations: key issues, advances, and opportunities. Ind Eng Chem Res 50:1161–1170. doi:10.1021/Ie1010004

    Article  Google Scholar 

  • Sherali HD, Alameddine A (1992) A new reformulation linearization technique for bilinear programming problems. J Glob Optim 2:379–410

    Article  MATH  MathSciNet  Google Scholar 

  • Sildir H, Arkun Y, Cakal B, Gokce D, Kuzu E (2012) Real-time optimization of an industrial hydrocracking plant. Paper presented at the 2012 AIChE annual meeting (AIChE 2012) Pittsburgh, 28 October 2012–2 November 2012

  • Soteica Visual Mesa (2015) VisualMesa petroleum refining and terminals solution. http://svmesa.com/refining-terminals.php

  • Steinschorn D, Hofferl F (1997) Refinery scheduling using mixed integer LP and dynamic recursion. In: NPRA computer conference, New Orleans

  • Symonds GH (1955) Linear programming: the solution of refinery problems. Esso Standard Oil Company, New York

  • Tawarmalani M, Sahinidis NV (2002) Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications. Nonconvex Optimization and Its Applications, vol 65. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Thomas C, Tong D, Jasper D, Acuff C (2009) Agile supply chain planning. Hydrocarb Process October 2009.

  • Ugray Z, Lasdon L, Plummer JC, Bussieck M (2009) Dynamic filters and randomized drivers for the multi-start global optimization algorithm MSNLP. Optim Method Softw 24:635–656. doi:10.1080/10556780902912389

    Article  MATH  MathSciNet  Google Scholar 

  • Varvarezos DK (2008) Optimal solution-range analysis in production planning: refinery feedstock selection. Ind Eng Chem Res 47:8282–8285. doi:10.1021/Ie800079e

    Article  Google Scholar 

  • Varvarezos D (2013a) Personal communication with Mel Bernstein

  • Varvarezos D (2013b) Refinery optimization-recent advances in planning and blending operations. Paper presented at the fields industrial optimization seminar (invited presentation), The Fields Institute for Research in Mathematical Sciences, Toronto, Canada, March 2013

  • Varvarezos DK (2013c) Personal communication with Mikkel Sorensen. Austria

  • Varvarezos D, Janak S (2012) Rundown blending optimization: a novel approach to a challenging scheduling problem. In: 6th international conference on foundations of computer-aided process operations (FOCAPO 2012), Savannah, 8–13 Jan 2012

  • Viswanathan J, Grossmann IE (1990) A combined penalty function and outer-approximation method for MINLP optimization. Comput Chem Eng 14:769–782. doi:10.1016/0098-1354(90)87085-4

    Article  Google Scholar 

  • Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106:25–57. doi:10.1007/s10107-004-0559-y

    Article  MATH  MathSciNet  Google Scholar 

  • Wang K, Shao Z, Biegler LT, Lang Y, Qian J (2011) Robust extensions for reduced-space barrier NLP algorithms. Comput Chem Eng 35:1994–2004. doi:10.1016/j.compchemeng.2010.11.014

    Article  Google Scholar 

  • Yadav S, Shaik MA (2012) Short-term scheduling of refinery crude oil operations. Ind Eng Chem Res 51:9287–9299. doi:10.1021/Ie300046g

    Article  Google Scholar 

  • Zanin AC, de Gouvea MT, Odloak D (2000) Industrial implementation of a real-time optimization strategy for maximizing production of LPG in a FCC unit. Comput Chem Eng 24:525–531. doi:10.1016/S0098-1354(00)00524-X

    Article  Google Scholar 

  • Zanin AC, de Gouvea MT, Odloak D (2002) Integrating real-time optimization into the model predictive controller of the FCC system. Control Eng Pract 10:819–831. doi:10.1016/S0967-0661(02)00033-3

    Article  Google Scholar 

  • Zhang J, Zhu XX, Towler GP (2001a) A level-by-level debottlenecking approach in refinery operation. Ind Eng Chem Res 40:1528–1540

    Article  Google Scholar 

  • Zhang J, Zhu XX, Towler GP (2001b) A simultaneous optimization strategy for overall integration in refinery planning. Ind Eng Chem Res 40:2640–2653

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Seong Khor.

Appendix

Appendix

See Tables 2, 3, 4, 5, 6, 7, and 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khor, C.S., Varvarezos, D. Petroleum refinery optimization. Optim Eng 18, 943–989 (2017). https://doi.org/10.1007/s11081-016-9338-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-016-9338-x

Keywords

Navigation