Skip to main content
Log in

Factor-based robust index tracking

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We consider a robust optimization approach for the problem of tracking a benchmark portfolio. A strict subset of assets are selected from the benchmark such that the expected return is maximized subject to both risk and tracking error limits. A robust version of the Fama-French 3 factor model is developed whereby uncertatiny sets for the expected return and factor loading matrix are generated. The resulting model is a mixed integer second-order conic problem. Computational results in tracking the S&P 100 out of sample show that the robust model can generate tracking portfolios that have better tracking error and Sharpe ratio than those generated by the nominal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Op Res 23(4):769–805

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Program 88(3):411–424

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Margalit T, Nemirovski A (2000) Robust modeling of multi-stage portfolio problems. In: Frenk H, Roos K, Terlaky T, Zhang S (eds) High performance optimization, applied optimization, vol 33. Springer, US, pp 303–328

    Chapter  Google Scholar 

  • Bertsimas D, Pachamanova D (2008) Robust multiperiod portfolio management in the presence of transaction costs. Comput Oper Res 35(1):3–17

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53(3):464–501. doi:10.1137/080734510

    Article  MathSciNet  MATH  Google Scholar 

  • Birge JR, Louveaux F (2011) Introduction to stochastic programming. Springer

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Burmeister E, Roll R, Ross SA (2003) Using macroeconomic factors to control portfolio risk. Tech Rep

  • Canakgoz N, Beasley J (2009) Mixed-integer programming approaches for index tracking and enhanced indexation. Eur J Op Res 196(1):384–399

    Article  MathSciNet  MATH  Google Scholar 

  • Chang T, Meade N, Beasley J, Sharaiha Y (2000) Heuristics for cardinality constrained portfolio optimisation. Comput Op Res 27:1271–1302

    Article  MATH  Google Scholar 

  • Chen C, Kwon RH (2012) Robust portfolio selection for index tracking. Comput Op Res 39(4):829–837

    Article  MathSciNet  MATH  Google Scholar 

  • Chen C, Li X, Tolman C, Wang S, Ye Y (2013) Sparse portfolio selection via quasi-norm regularization, working paper

  • Chopra VK, Ziemba WT (1993) The effect of errors in means, variances, and covariances on optimal portfolio choice. J Portf Manag 19(2):6–11

    Article  Google Scholar 

  • Corielli F, Marcellino M (2006) Factor based index tracking. J Bank Financ 30(8):2215–2233

  • Cornuejols G, Tutuncu R (2006) Optimization methods in finance. Finance and risk, Cambridge University Press, Mathematics

  • D’ecclesia RL, Zenios SA (1994) Risk factor analysis and portfolio immunization in the italian bond market. J Fixed Income 4(2):51–58

    Article  MathSciNet  Google Scholar 

  • Erdogan E, Goldfarb D, Iyengar G (2004) Robust portfolio management. Tech Report CORC TR-2004-11, IEOR, Columbia University, New York

  • Fama E, French K (1993) Common risk factors in the returns on stocks and bonds. J Financ Econ 33(1):3–56

    Article  MATH  Google Scholar 

  • Gulpinar N, Katata K, Pachamanova DA (2011) Robust portfolio allocation under discrete choice constraints. J Asset Manag 12:67–83

    Article  Google Scholar 

  • Goldfarb D, Iyengar G (2003) Robust portfolio selection problems. Math Op Res 28(1):1–38. doi:10.1287/moor.28.1.1.14260

    Article  MathSciNet  MATH  Google Scholar 

  • Gurobi Optimization I (2015) Gurobi optimizer reference manual

  • Jorion P (2003) Portfolio optimization with tracking error constraints. Financ Anal J 59(5):70–82

    Article  Google Scholar 

  • Karlow D, Rossbach P (2011) A method for robust index tracking. In: Hu B, Morasch K, Pickl S, Siegle M (eds) Operations research proceedings 2010. Operations research proceedings. Springer, Berlin Heidelberg, pp 9–14

  • Kolbert F, Wormald L (2010) Robust portfolio optimization using second-order cone programming

  • Lejeune MA, Samatlı-Paç G (2013) Construction of risk-averse enhanced index funds. INFORMS J Comput 25(4):701–719

    Article  MathSciNet  Google Scholar 

  • Mulvey JM, Vanderbei RJ, Zenios SA (1995) Robust optimization of large-scale systems. Op Res 43(2):264–281. doi:10.1287/opre.43.2.264

    Article  MathSciNet  MATH  Google Scholar 

  • Sadjadi SJ, Gharakhani M, Safari E (2012) Robust optimization framework for cardinality constrained portfolio problem. Appl Soft Comput 12(1):91–99

    Article  Google Scholar 

  • SPs (2015) http://www.us.spindices.com

  • Tutuncu R, Koenig M (2004) Robust asset allocation. Annals Op Res 132(1–4):157–187

    Article  MathSciNet  MATH  Google Scholar 

  • Zenios SA (2006) Practical financial optimization: decision making for financial engineers. Blackwell, Incorporated

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy H. Kwon.

Appendix 1: Parameter generation for the robust tracking model

Appendix 1: Parameter generation for the robust tracking model

We applied the same procedure described in Goldfarb and Iyengar (2003) to three-factor model for constructing factor-based robust index tracking models. We follow Goldfarb and Iyengar (2003) closely. Suppose the return vector r is given by the linear regression model:

$$ r=\mu +V^{T}f+\epsilon $$
(39)

where \(\mu \in R^{n}\) is the vector of mean returns, f \(\sim N\left( 0,F\right) \in R^{m}\) is the vector of returns of the factors that drive the market, \(V\in R^{m\times n}\) is the matrix of factor loadings of the n assets, and \(\epsilon \sim N\left( 0,D\right) \) is the vector of residual returns.

Let \(S=\left[ r^{1},r^{2},\ldots ,r^{p}\right] \in R^{n\times p}\) be the matrix of asset returns and \(B=\left[ f^{1},f^{2},\ldots ,f^{p}\right] \in R^{m\times p}\) be the matrix of factor returns, then (39) which can be represented by the following linear model:

$$ y_{i}=Ax_{i}+\epsilon _{i},\forall i=1,\ldots ,n $$

where \(y_{i}=\left[ r_{i}^{1},r_{i}^{2},\ldots ,r_{i}^{p}\right] ^{T},A= \left[ 1,B^{T}\right] ,x_{i}=\left[ \mu _{i},V_{1i},V_{2i},\ldots ,V_{mi} \right] ^{T}\) and \(\epsilon _{i}=\left[ e_{i}^{1},e_{i}^{2},\ldots ,e_{i}^{p} \right] ^{T}\).

As we shown in Sect. 4.1, for single factor model, we set \(B= \left[ f^{1},\,f^{2}\right] =\left[ r_{M},r_{f}\right] ^{T}\); for three factor model, \(B=\left[ f^{1},\,f^{2},\,f^{3},\,f^{4}\right] =\left[ r_{M},r_{f},SMB,HML \right] ^{T}\). The least-squares estimate \(\overline{x}_{i}\) of the true parameter \(x_{i}\) is given by

$$ \overline{x}_{i}=\left( A^{T}A\right) ^{-1}A^{T}y_{i},\forall i=1,\ldots ,n $$
(40)

Substituting \(y_{i}=Ax_{i}+\epsilon _{i}\) into (40), we get \(\overline{ x}_{i}-x_{i}=\left( A^{T}A\right) ^{-1}A^{T}\epsilon _{i}\sim N\left( 0,\Sigma \right) \) where \(\Sigma =\sigma _{i}^{2}\left( A^{T}A\right) ^{-1}\) . \(\sigma _{i}^{2}\) is unknown in practice, so we replace \(\sigma _{i}^{2}\) by \(\left( m+1\right) s_{i}^{2}\) where \(s_{i}^{2}\) is the unbiased estimate of \(\sigma _{i}^{2}\). \(\sigma _{i}^{2}\) is given by

$$ s_{i}^{2}=\frac{\left\| y_{i}-A\overline{x}_{i}\right\| }{p-m-1} $$
(41)

and the resulting variable

$$ {\mathbb{Y}}=\frac{1}{\left( m+1\right) s_{i}^{2}}\left( \overline{x} _{i}-x_{i}\right) ^{T}\left( A^{T}A\right) \left( \overline{x} _{i}-x_{i}\right) $$
(42)

is a F-distribution with \((m+1)\) degrees of freedom in the numerator and \( (p-m-1)\) degrees of freedom in the denominator Goldfarb and Iyengar (2003).

By setting the joint confidence region \(\omega \) for set \(\left( \mu ,V\right) \), Goldfarb and Iyengar (2003) derive the following result for the parameters that can be used in our robust model:

$$ \mu _{0,i}= {} \overline{\mu }_{i},\gamma _{i}=\sqrt{\left( A^{T}A\right) _{11}^{-1}c_{1}\left( \omega \right) s_{i}^{2}},i=1,\ldots ,n $$
(43)
$$ V_{0}= {} \overline{V},G=\left( Q\left( A^{T}A\right) ^{-1}Q^{T}\right) ^{-1},\rho _{i}=\sqrt{mc_{m}\left( \omega \right) s_{i}^{2}},i=1,\ldots ,n $$
(44)

where \(c_{J}\left( \omega \right) \) be the \(\omega \)-critical value. More prove details read in Goldfarb and Iyengar (2003). Then a worst case bound for the covariance matrix is achieved by 3 factor model, i.e. \( cov=V_{0}^{T}FV_{0}+\overline{D}\), where \(\overline{D}=diag\left( s_{i}^{2}\right) \). The uncertainty set for \(\mu \) in (43) will be used in for robust portfolio returns and \(V_{0}\) in (44) will be used to relative robust covariance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, R.H., Wu, D. Factor-based robust index tracking. Optim Eng 18, 443–466 (2017). https://doi.org/10.1007/s11081-016-9314-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-016-9314-5

Keywords

Navigation