Skip to main content
Log in

A parallel evolution strategy for an earth imaging problem in geophysics

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

In this paper we propose a new way to compute a rough approximation solution, to be later used as a warm starting point in a more refined optimization process, for a challenging global optimization problem related to earth imaging in geophysics. The warm start consists of a velocity model that approximately solves a full-waveform inverse problem at low frequency. Our motivation arises from the availability of massively parallel computing platforms and the natural parallelization of evolution strategies as global optimization methods for continuous variables. Our first contribution consists of developing a new and efficient parametrization of the velocity models to significantly reduce the dimension of the original optimization space. Our second contribution is to adapt a class of evolution strategies to the specificity of the physical problem at hands where the objective function evaluation is known to be the most expensive computational part. A third contribution is the development of a parallel evolution strategy solver, taking advantage of a recently proposed modification of these class of evolutionary methods that ensures convergence and promotes better performance under moderate budgets. The numerical results presented demonstrate the effectiveness of the algorithm on a realistic 3D full-waveform inverse problem in geophysics. The developed numerical approach allows us to successfully solve an acoustic full-waveform inversion problem at low frequencies on a reasonable number of cores of a distributed memory computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The Society of Exploration Geophysicists.

  2. European Association of Geoscientists and Engineers.

  3. http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm.

References

  • Aditya G, Akhilesh B, Kuntal C (2012) A comprehensive review of image smoothing techniques. Int J Adv Res Comput Eng Technol 1:315–319

    Google Scholar 

  • Auger A, Brockhoff D, Hansen N (2013) Benchmarking the local metamodel CMA–ES on the noiseless BBOB’2013 test bed. In: Proceedings of the 15th annual conference companion on genetic and evolutionary computation, GECCO ’13 companion. ACM, New York, pp 1225–1232

  • Auger A, Hansen N, Perez Zerpa ZJ, Ros R, Schoenauer M (2009) Experimental comparisons of derivative free optimization algorithms. In: 8th international symposium on experimental algorithms, vol 5526 of Lecture Notes in Computer Science. Springer, pp 3–15

  • Berenger J-P (1994) A perfectly matched layer for absorption of electromagnetic waves. J Comput Phys 114:185–200

    Article  MathSciNet  MATH  Google Scholar 

  • Berenger J-P (1996) Three-dimensional perfectly matched layer for absorption of electromagnetic waves. J Comput Phys 127:363–379

    Article  MathSciNet  MATH  Google Scholar 

  • Beyer H-G, Schwefel H-P (2002) Evolution strategies: a comprehensive introduction. Nat Comput 1:3–52

    Article  MathSciNet  MATH  Google Scholar 

  • Billette F, Le Bégat S, Podvin P, Lambaré G (2003) Practical aspects and applications of 2D stereotomography. Geophysics 68:1008–1021

    Article  Google Scholar 

  • Billette F, Lambaré G (1998) Velocity macro-model estimation from seismic reflection data by stereotomography. Geophys J Int 135:671–690

    Article  Google Scholar 

  • Britanak V, Yip PC, Rao KR (2006) Discrete cosine and sine transforms. Academic Press, Oxford

    Book  Google Scholar 

  • Brossier R (2009) Imagerie Sismique à Deux Dimensions des Milieux Visco-élastiques par Inversion des Formes d’Ondes : Développements Méthodologiques et Applications. PhD thesis, Université de Nice-Sophia Antipolis

  • Calandra H, Gratton S, Lago R, Vasseur X, Carvalho L (2013) A modified block flexible GMRES method with deflation at each iteration for the solution of non-hermitian linear systems with multiple right-hand sides. SIAM J Sci Comput 35:S345–S367

    Article  MathSciNet  MATH  Google Scholar 

  • Calandra H, Gratton S, Langou J, Pinel X, Vasseur X (2012) Flexible variants of block restarted GMRES methods with application to geophysics. SIAM J Sci Comput 34:A714–A736

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen G (2002) Higher-order numerical methods for transient wave equations. Springer, Berlin

    Book  MATH  Google Scholar 

  • Collins MD, Kuperman WA (1992) Nonlinear inversion for ocean bottom properties. J Acoust Soc Am 92:2770–2782

    Article  Google Scholar 

  • Diouane Y (2014) Globally convergent evolution strategies with application to an earth imaging problem in geophysics. PhD thesis. Institut National Polytechnique de Toulouse

  • Diouane Y, Gratton S, Vicente LN (2015) Globally convergent evolution strategies. Math Program 152:467–490

    Article  MathSciNet  Google Scholar 

  • Diouane Y, Gratton S, Vicente LN (2015) Globally convergent evolution strategies for constrained optimization. Comput Optim Appl 62:323–346

    Article  MathSciNet  Google Scholar 

  • Ernst O, Gander MJ (2012) Why it is difficult to solve Helmholtz problems with classical iterative methods. In: Lakkis O, Graham I, Hou T, Scheichl R (eds) Numerical analysis of multiscale problems. Springer, New York, pp 325–363

    Chapter  Google Scholar 

  • Gerstoft P (1994) Nonlinear inversion for ocean bottom properties. J Acoust Soc Am 95:770–782

    Article  Google Scholar 

  • Hansen N (2011) The CMA evolution strategy: a tutorial. Available via URL: https://www.lri.fr/ hansen/cmatutorial.pdf

  • Hansen N, Arnold DV, Auger A (to appear) Evolution strategies. In Kacprzyk J, Pedrycz W (eds) Handbook of computational intelligence. Springer, Berlin

  • Hansen N, Auger A, Ros Raymond R, Finck S, Pošík P (2010) Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009. In: Proceedings of the 12th annual conference companion on genetic and evolutionary computation, GECCO ’10. ACM, New York, pp 1689–1696

  • Hansen N, Ostermeier A, Gawelczyk A (1995) On the adaptation of arbitrary normal mutation distributions in evolution strategies: the generating set adaptation. In Eshelman L (ed) Proceedings of the sixth international conference on genetic algorithms. Pittsburgh, pp 57–64

  • Henderson A (2007) ParaView guide. A parallel visualization application. Kitware Inc, Clifton Park

  • Kennett BL, Sambridge MS, Williamson PR (1988) Subspace methods for large inverse problems with multiple parameter classes. Geophys J Int 94:237–247

    Article  MATH  Google Scholar 

  • Lago R (2013) A study on block flexible iterative solvers with application to earth imaging problem in geophysics. PhD thesis. Institut National Polytechnique de Toulouse

  • Lambaré G (2008) Stereotomography. Geophysics 73:VE25–VE34

    Article  Google Scholar 

  • Mulder WA, Plessix RE (2008) Exploring some issues in acoustic full waveform inversion. Geophys Prospect 56:827–841

    Article  Google Scholar 

  • Nabi OM, Xiaodong L (2010) A comparative study of CMA–ES on large scale global optimisation. In Jiuyong Li (ed) Australasian conference on artificial intelligence, vol 6464 of Lecture Notes in Computer Science. Springer, pp 303–312

  • Nolet G (ed) (1987) Seismic tomography: with applications in global seismology and exploration geophysics. D. Reidel publishing Company, Dordrecht

    Google Scholar 

  • Oldenburg DW, McGillivray PR, Ellis RG (1993) Generalized subspace methods for large-scale inverse problems. Geophys J Int 114:12–20

    Article  Google Scholar 

  • Operto S, Virieux J, Dessa JX, Pascal G (2006) Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: application to the eastern Nankai Trough. J Geophys Res 159:1032–1056

    Google Scholar 

  • Pinel X (2010) A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics. PhD thesis. Institut National Polytechnique de Toulouse

  • Pratt GR, Worthington MH (1990) Inverse theory applied to multi-source cross-hole tomography. Part 1: acoustic wave-equation method. Geophys Prospect 38(3):287–310

    Article  Google Scholar 

  • Pratt RG (1999) Seismic waveform inversion in the frequency domain, Part 1: theory and verification in a physical scale model. Geophysics 64:888–901

    Article  Google Scholar 

  • Rauber T, Rünger G (2013) Parallel programming: for multicore and cluster systems, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Ravaut C, Operto S, Improta L, Virieux J, Herrero A, Dell’Aversana P (2004) Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt. Geophys J Int 159:1032–1056

    Article  Google Scholar 

  • Rechenberg I (1973) Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution. Frommann-Holzboog

  • Rios LM, Sahinidis NV (2013) Derivative-free optimization: a review of algorithms and comparison of software implementations. J Glob Optim 56:1247–1293

    Article  MathSciNet  MATH  Google Scholar 

  • Röth G (1994) Application of neural networks to seismic inverse problems. PhD thesis. Institut de Physique du Globe de Paris

  • Shin C, Cha YH (2008) Waveform inversion in the Laplace domain. Geophys J Int 173:922–931

    Article  Google Scholar 

  • Shin C, Ha W (2008) A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains. Geophysics 73:VE119–VE133

    Article  Google Scholar 

  • Shin C, Ha W (2012) Laplace-domain full-waveform inversion of seismic data lacking low-frequency information. Geophysics 77:R199–R206

    Article  Google Scholar 

  • Sirgue L (2006) The importance of low frequency and large offset in waveform inversion. In: Extended abstracts, vol A037 of 68th confererence & technical exhibition. EAGE

  • Sirgue L, Pratt RG (2004) Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies. Geophysics 69:231–248

    Article  Google Scholar 

  • Sjogreen B, Petersson NA (2014) Source estimation by full wave form inversion. J Sci Comput 59:247–276

    Article  MathSciNet  Google Scholar 

  • Skilling J, Bryan RK (1984) Maximum entropy image reconstruction: general algorithm. Mon Not R Astron Soc 211:111–124

    Article  MATH  Google Scholar 

  • Sourbier F, Operto S, Virieux J, Amestoy P, L’ JY (2009) Excellent. FWT2D: a massively parallel program for frequency-domain Full-Waveform Tomography of wide-aperture seismic data—part 1: algorithm. Comput Geosci 35:487–495

    Article  Google Scholar 

  • Sourbier F, Operto S, Virieux J, Amestoy P, L’ JY (2009) Excellent. FWT2D: a massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data: part 2: numerical examples and scalability analysis. Comput Geosci 35:496–514

    Article  Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proceedings of the sixth international conference on computer vision. IEEE Computer Society, Washington, DC, pp. 839–846

  • Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74:WCC1–WCC26

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge GENCI (Grand Equipement National de Calcul Intensif) for letting us used the CURIE computer at CCRT, Bruyères-le-Châtel, France. This work was granted access to the HPC resources of CCRT under allocation 2014065068 made by GENCI. Support for L. N. Vicente was provided by FCT under Grants PTDC/MAT/116736/2010 and PEst-C/MAT/UI0324/2011 and by the Réseau Thématique de Recherche Avancée, Fondation de Coopération Sciences et Technologies pour l’Aéronautique et l’Espace, under the grant ADTAO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Diouane.

Appendix

Appendix

Theorem 6.1

Given \(n \in {\mathbb {N}}, N \in {\mathbb {N}}\) with \(n < N\) and \(\delta =[N/n],\) the coefficient matrix \(C \in {\mathbb {R}}^{n \times n}\) defined as

$$ C_{ij} \; = \; \frac{2N}{(j-1)\pi \delta } \cos \bigg (\frac{\pi }{N}(j-1) (i-\frac{1}{2})\delta \bigg ) \sin \bigg (\frac{\delta \pi }{2N}(j-1)\bigg ) $$

is nonsingular. (Note that for \(j=1\) we have used the convention \(sin(0)/0=1\) , i.e., \(C_{i1} = 1\).)

Proof

A direct calculation shows that

$$ \det (C) \; = \; \prod ^{n}_{j=1} \frac{2N}{(j-1)\pi \delta } \sin \left( \frac{\delta \pi }{2N}(j-1) \right) \det (M), $$

where \(M \in {\mathbb {R}}^{n \times n}\) is defined as \(M_{ij}= \cos (\frac{\pi }{N}(j-1) (i-\frac{1}{2})\delta )\). The nonsingularity of M can be deduced from the properties of DCT-III (Britanak et al. 2006). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diouane, Y., Gratton, S., Vasseur, X. et al. A parallel evolution strategy for an earth imaging problem in geophysics. Optim Eng 17, 3–26 (2016). https://doi.org/10.1007/s11081-015-9296-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-015-9296-8

Keywords

Navigation