Skip to main content
Log in

A class of a posteriori parameter choice rules for filter-based regularization schemes

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Regularization is a method for providing a stable approximate solution to ill-posed operator equations, and it involves the regularization parameter which plays an important role in the convergence of the method. In this article, we propose a class of a posteriori parameter choice rules for filter-based regularization methods and establish the optimal rate of convergence \(O(\delta ^{\frac{\nu }{\nu +1}})\) from the proposed rules. We study these methods along with the proposed parameter choice rules in the context of pseudo-differential operator equations as well as the analytic continuation problem. The numerical implementation of the pseudo-differential operator equation and analytic continuation problem is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Airapetyan, R.G., Ramm, A.G.: Numerical inversion of the Laplace transform from the real axis. J. Math. Anal. Appl. 248(2), 572–587 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bianchi, D., Buccini, A., Donatelli, M., Serra-Capizzano, S.: Iterated fractional Tikhonov regularization. Inverse Probl. 31(5), 055005 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bianchi, D., Donatelli, M.: On generalized iterated Tikhonov regularization with operator-dependent seminorms. Electr. Trans. Numer. Anal. 47, 73–99 (2017)

    MathSciNet  Google Scholar 

  4. Cheng, H., Fu, C.L., Feng, X.L.: An optimal filtering method for stable analytic continuation. J. Comput. Appl. Math. 236(9), 2582–2589 (2012)

    Article  MathSciNet  Google Scholar 

  5. Engl, H.W.: On the choice of the regularization parameter for iterated Tikhonov regularization of ill-posed problems. J. Approx. Theory 49(1), 55–63 (1987)

    Article  MathSciNet  Google Scholar 

  6. Engl, H.W., Gfrerer, H.: A posteriori parameter choice for general regularization methods for solving linear ill-posed problems. Appl. Numer. Math. 4(5), 395–417 (1988)

    Article  MathSciNet  Google Scholar 

  7. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems, vol. 375. Springer Science & Business Media, (1996)

  8. Epstein, C.L.:Introduction to the mathematics of medical imaging. SIAM, (2007)

  9. Feng, X., Ning, W.: A wavelet regularization method for solving numerical analytic continuation. Int. J. Comput. Math. 92(5), 1025–1038 (2015)

    Article  MathSciNet  Google Scholar 

  10. Franklin, J.: Analytic continuation by the fast Fourier transform. SIAM J. Sci. Stat. Comput. 11(1), 112–122 (1990)

    Article  MathSciNet  Google Scholar 

  11. Fu, C.L., Deng, Z.L., Feng, X.L., Dou, F.F.: A modified Tikhonov regularization for stable analytic continuation. SIAM J. Numer. Anal. 47(4), 2982–3000 (2009)

    Article  MathSciNet  Google Scholar 

  12. Fu, C.L., Dou, F.F., Feng, X.L., Qian, Z.A.: A simple regularization method for stable analytic continuation. Inverse Probl. 24(6), 065003 (2008)

    Article  MathSciNet  Google Scholar 

  13. Fu, C.L., Qian, Z.: Numerical pseudodifferential operator and Fourier regularization. Adv. Comput. Math. 33(4), 449–470 (2010)

    Article  MathSciNet  Google Scholar 

  14. Fu, C.L., Zhang, Y.X., Cheng, H., Ma, Y.J.: The a posteriori Fourier method for solving ill-posed problems. Inverse Probl. 28(9), 095002 (2012)

    Article  MathSciNet  Google Scholar 

  15. Gerth, D., Klann, E., Ramlau, R., Reichel, L.: On fractional Tikhonov regularization. J. Inverse Ill-Posed Probl. 23(6), 611–625 (2015)

    Article  MathSciNet  Google Scholar 

  16. Gfrerer, H.: An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates. Math. Comput. 49(180), 507–522 (1987)

    Article  MathSciNet  Google Scholar 

  17. Gockenbach, M.S., Gorgin, E.: On the convergence of a heuristic parameter choice rule for Tikhonov regularization. SIAM J. Sci. Comput. 40(4), A2694–A2719 (2018)

    Article  MathSciNet  Google Scholar 

  18. Groetsch, C.W.: The theory of Tikhonov regularization for Fredholm equations. 04p, Boston Pitman Publication, (1984)

  19. Hämarik, U., Palm, R., Raus, T.: A family of rules for parameter choice in Tikhonov regularization of ill-posed problems with inexact noise level. J. Comput. Appl. Math. 236(8), 2146–2157 (2012)

    Article  MathSciNet  Google Scholar 

  20. Hanke, M., Raus, T.S.: A general heuristic for choosing the regularization parameter in ill-posed problems. SIAM J. Sci. Comput. 17(4), 956–972 (1996)

    Article  MathSciNet  Google Scholar 

  21. Hao, D.N., Sahli, H.: On a class of severely ill-posed problems. Vietnam J. Math. 32, 143–152 (2004)

    MathSciNet  Google Scholar 

  22. Hochstenbach, M.E., Reichel, L.: Fractional Tikhonov regularization for linear discrete ill-posed problems. BIT Numer. Math. 51(1), 197–215 (2011)

    Article  MathSciNet  Google Scholar 

  23. Karimi, M., Moradlou, F., Hajipour, M.: On the ill-posed analytic continuation problem: an order optimal regularization scheme. Appl. Numer. Math. 161, 311–332 (2021)

    Article  MathSciNet  Google Scholar 

  24. Kindermann, S., Raik, K.N.: Convergence of heuristic parameter choice rules for convex Tikhonov regularization. SIAM J. Numer. Anal. 58(3), 1773–1800 (2020)

    Article  MathSciNet  Google Scholar 

  25. Klann, E., Ramlau, R.: Regularization by fractional filter methods and data smoothing. Inverse Probl. 24(2), 025018 (2008)

    Article  MathSciNet  Google Scholar 

  26. Louis, A.K.: Inverse und schlecht gestellte Probleme. Springer-Verlag, (2013)

  27. Miller, K., Viano, G.A.: On the necessity of nearly-best-possible methods for analytic continuation of scattering data. J. Math. Phys. 14(8), 1037–1048 (1973)

    Article  MathSciNet  Google Scholar 

  28. Nair, M.T.: Linear operator equations: approximation and regularization. World Scientific, (2009)

  29. Nair, M.T., Rajan, M.P.: On improving accuracy for Arcangeli’s method for solving ill-posed equations. Integral Equ. Oper. Theory 39(4), 496–501 (2001)

    Article  MathSciNet  Google Scholar 

  30. Nair, M.T., Rajan, M.P.: Generalized Arcangeli’s discrepancy principles for a class of regularization methods for solving ill-posed problems. J. Inverse Ill-Posed Probl. 10(3), 281–294 (2002)

    Article  MathSciNet  Google Scholar 

  31. Qian, Z.: A new generalized Tikhonov method based on filtering idea for stable analytic continuation. Inverse Probl. Sci. Eng. 26(3), 362–375 (2018)

    Article  MathSciNet  Google Scholar 

  32. Rajan, M.P.: A parameter choice strategy for the regularized approximation of Fredholm integral equations of the first kind. Int. J. Comput. Math. 87(11), 2612–2622 (2010)

    Article  MathSciNet  Google Scholar 

  33. Reddy, G.D.: The parameter choice rules for weighted Tikhonov regularization scheme. Comput. Appl. Math. 37(2), 2039–2052 (2018)

    Article  MathSciNet  Google Scholar 

  34. Reddy, G.D.: A class of parameter choice rules for stationary iterated weighted Tikhonov regularization scheme. Appl. Math. Comput. 347, 464–476 (2019)

    MathSciNet  Google Scholar 

  35. Stefanescu, I.S.: On the stable analytic continuation with a condition of uniform boundedness. J. Math. Phys. 27(11), 2657–2686 (1986)

    Article  MathSciNet  Google Scholar 

  36. Xiong, X.: A regularization method for a Cauchy problem of the Helmholtz equation. J. Comput. Appl. Math. 233(8), 1723–1732 (2010)

    Article  MathSciNet  Google Scholar 

  37. Xiong, X., Cheng, Q.: A modified Lavrentiev iterative regularization method for analytic continuation. J. Comput. Appl. Math. 327, 127–140 (2018)

    Article  MathSciNet  Google Scholar 

  38. Xiong, X., Fan, X., Li, M.: Spectral method for ill-posed problems based on the balancing principle. Inverse Probl. Sci. Eng. 23(2), 292–306 (2015)

    Article  MathSciNet  Google Scholar 

  39. Xiong, X., Xue, X., Qian, Z.: A modified iterative regularization method for ill-posed problems. Appl. Numer. Math. 122, 108–128 (2017)

    Article  MathSciNet  Google Scholar 

  40. Xiong, X., Zhu, L., Li, M.: Regularization methods for a problem of analytic continuation. Math. Comput. Simul. 82(2), 332–345 (2011)

    Article  MathSciNet  Google Scholar 

  41. Xue, X., Xiong, X.: A posteriori fractional Tikhonov regularization method for the problem of analytic continuation. Mathematics 9(18), 2255 (2021)

    Article  Google Scholar 

  42. Yang, F., Wang, Q., Li, X.: A fractional Landweber iterative regularization method for stable analytic continuation. AIMS Math. 6(1), 404–419 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I want to express my gratitude to the faculties and my colleagues at SRM University AP for their valuable and constructive suggestions during the planning and development of this research work.

Author information

Authors and Affiliations

Authors

Contributions

The two authors contributed equally to the preparation of this article.

Corresponding author

Correspondence to G. D. Reddy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayana, K.J., Reddy, G.D. A class of a posteriori parameter choice rules for filter-based regularization schemes. Numer Algor (2024). https://doi.org/10.1007/s11075-024-01815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-024-01815-x

Keywords

Mathematics Subject Classification (2010)

Navigation