Skip to main content
Log in

Unconditionally convergent and superconvergent finite element method for nonlinear time-fractional parabolic equations with distributed delay

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient Newton linearized numerical method for the nonlinear time-fractional parabolic equations with distributed delay based on the Galerkin finite element method in space and the nonuniform L1 scheme in time. The term of distributed delay is approximated by using the compound trapezoidal formula. For the constructed numerical scheme, we mainly focus on the unconditional convergence and superconvergence without any time–space ratio restrictions, the key of which is the use of fractional discrete Grönwall inequality and time–space error splitting technique. Numerical tests for several biological models, including the fractional single-species population model with distributed delay, the fractional diffusive Nicholson’s blowflies equation with distributed delay, and the fractional diffusive Mackey-Glass equation with distributed delay, are conducted to confirm the theoretical results. Finally, combined with the nonunifom Alikhanov scheme in time and the FEM in space, we extend a higher-order Newton linearized numerical scheme for the nonlinear time-fractional parabolic equations with distributed delay and give some numerical tests for some biological models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable

References

  1. Smith, H., Zhao, X.: Global asymptotic stability of traveling waves in delayed reaction-diffusion equations. SIAM J. Math. Anal. 31(3), 514–534 (2006)

    MathSciNet  Google Scholar 

  2. Alvarez-Vázquez, L., Fernández, F., Muñoz-Sola, R.: Analysis of a multistate control problem related to food technology. J. Differ. Eqns. 245(1), 130–153 (2008)

    ADS  MathSciNet  Google Scholar 

  3. Rezounenko, A., Wu, J.: A non-local PDE model for population dynamics with state-selective delay: Local theory and global attractors. J. Comput. Appl. Math. 190, 99–113 (2006)

    ADS  MathSciNet  Google Scholar 

  4. Aguerrea, M., Trofimchuk, S., Valenzuela, G.: Uniqueness of fast travelling fronts in reaction-diffusion equations with delay. Proc. R. Soc. A Math. Phys. 464, 2591–2608 (2008)

    ADS  MathSciNet  CAS  Google Scholar 

  5. Li, D., Sun, W., Wu, C.: A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer. Math. Theor. Methods Appl. 14, 355–376 (2021)

    MathSciNet  CAS  Google Scholar 

  6. Li, L., Zhou, B., Chen, X., Wang, Z.: Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay. Appl. Math. Comput. 337, 144–152 (2018)

    MathSciNet  Google Scholar 

  7. Hao, Z., Fan, K., Cao, W., Sun, Z.: A finite difference scheme for semilinear space-fractional diffusion equations with time delay. Appl. Math. Comput. 275, 238–254 (2016)

    MathSciNet  Google Scholar 

  8. Abbaszadeh, M., Dehghan, M., Zaky, M., Hendy, A.: Interpolating stabilized element free Galerkin method for neutral delay fractional damped diffusion-wave equation. J. Funct. Spaces, vol. 2021, Article ID 6665420, 11 pp , 2021 (2021)

  9. Zayernouri, M., Cao, W., Zhang, Z., Karniadakis, G.: Spectral and discontinuous spectral element methods for fractional delay equations. SIAM J. Sci. Comput. 36(6), B904–B929 (2014)

    MathSciNet  Google Scholar 

  10. Dehghan, M., Abbaszadeh, M.: A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation. Math. Methods Appl. Sci. 41, 3476–3494 (2018)

    ADS  MathSciNet  Google Scholar 

  11. Khader, M.: The use of generalized Laguerre polynomials in spectral methods for fractional order delay differential equations. J. Comput. Nonlinear Dyn. 8(041018), 1–5 (2013)

    Google Scholar 

  12. Li, L., She, M., Niu, Y.: Fractional Crank-Nicolson Galerkin finite element methods for nonlinear time fractional parabolic problems with time delay. J. Funct. Spaces, vol. 2021, Article ID 9981211, 10 pp, 2021 (2021)

  13. Zhang, C., Vandewalle, S.: Stability analysis of Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. IMA J. Numer. Anal. 24, 193–214 (2004)

    MathSciNet  Google Scholar 

  14. Zhang, C., Vandewalle, S.: General linear methods for Volterra integro-differential equations with memory. SIAM J. Sci. Comput. 27(6), 2010–2031 (2006)

    MathSciNet  Google Scholar 

  15. Huang, C., Vandewalle, S.: An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Sci. Comput. 25, 1608–1632 (2004)

    MathSciNet  Google Scholar 

  16. Zubik-Kowal, B.: Stability in the numerical solution of linear parabolic equations with a delay term. BIT 41, 191–206 (2001)

    MathSciNet  Google Scholar 

  17. He, Z., Wu, F., Qin, H.: An effective numerical algorithm based on stable recovery for partial differential equations with distributed delay. IEEE Access 6(1), 72117–72124 (2018)

    Google Scholar 

  18. Zhang, G., Xiao, A.: Exact and numerical stability analysis of reaction-diffusion equations with distributed delays. Front. Math. 11(1), 189–205 (2016)

    MathSciNet  CAS  Google Scholar 

  19. Li, D., Zhang, C.: Superconvergence of a discontinuous Galerkin method for first-order linear delay differential equations. J. Comput. Math. 29(5), 574–588 (2011)

    MathSciNet  Google Scholar 

  20. Li, D., Zhang, C., Qin, H.: LDG method for reaction-diffusion dynamical systems with time delay. Appl. Math. Comput. 217, 9173–9181 (2011)

    MathSciNet  Google Scholar 

  21. Zhang, G., Xiao, A., Zhou, J.: Implicit-explicit multistep finite element methods for nonlinear convection-diffusion-reaction equations with time delay. J. Comput. Math. 95(12), 2496–2510 (2017)

    MathSciNet  Google Scholar 

  22. Qin, H., Wu, F., Zhang, J., Mu, C.: A linearized compact ADI scheme for semilinear parabolic problems with distributed delay. J. Sci. Comput. 87(25), 1–19 (2021)

    MathSciNet  Google Scholar 

  23. Deng, K., Xiong, Z., Huang, Y.: The Galerkin continuous finite element method for delay-differential equation with a variable term. Appl. Math. Comput. 186(2), 1488–1496 (2007)

    MathSciNet  Google Scholar 

  24. Qin, H., Zhang, Q., Wan, S.: The continuous Galerkin Finite element methods for linear neutral delay differential equations. Appl. Math. Comput. 346, 76–85 (2019)

    MathSciNet  Google Scholar 

  25. Han, H., Zhang, C.: Galerkin finite element methods solving 2D initial-boundary value problems of neutral delay-reaction-diffusion equations. Comput. Math. Appl. 92, 159–171 (2021)

    MathSciNet  Google Scholar 

  26. Zhao, K.: Multiple positive solutions of integral BVPs for high-order nonlinear fractional differential equations with impulses and distributed delays. Dyn. Syst. 30(2), 208–223 (2015)

    MathSciNet  CAS  Google Scholar 

  27. Alofi, A., Cao, J., Elaiw, A., Al-Mozrooei, A.: Delay-dependent stability criterion of Caputo fractional neural networks with distributed delay. Discrete Dyn. Nat. Soc. 529358 (2014)

  28. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    MathSciNet  Google Scholar 

  29. Alikhanov, A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    ADS  MathSciNet  Google Scholar 

  30. Li, M., Zhao, J., Huang, C., Chen, S.: Nonconforming virtual element method for the time fractional reaction-subdiffusion equation with non-smooth data. J. Sci. Comput. 81(3), 1823–1859 (2019)

    MathSciNet  Google Scholar 

  31. Li, M., Zhao, J., Huang, C., Chen, S.: Conforming and nonconforming VEMs for the fourth-order reaction-subdiffusion equation: a unified framework. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab030

    Article  Google Scholar 

  32. Gao, G., Sun, Z., Zhang, H.: A new fractional differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    ADS  MathSciNet  Google Scholar 

  33. Alikhanov, A., Huang, C.: A high-order \(L2\) type difference scheme for the time-fractional diffusion equation. Appl. Math. Comput. 411(15), 126545 (2021)

    MathSciNet  Google Scholar 

  34. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56, 1–23 (2018)

    MathSciNet  Google Scholar 

  35. Stynes, M., Oriordan, E., Gracia, J.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    MathSciNet  Google Scholar 

  36. Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schröodinger equations. SIAM J. Sci. Comput. 39(6), A3067–A3088 (2017)

    Google Scholar 

  37. Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80, 403–419 (2019)

    MathSciNet  Google Scholar 

  38. Chen, H., Wang, Y., Fu, H.: \(\alpha \)-robust \(H^1\)-norm error estimate of nonuniform Alikhanov scheme for fractional sub-diffusion equation. J. Appl. Math. Lett. 125, 107771 (2022)

    Google Scholar 

  39. Wei, Y., Lü, S., Chen, H., Zhao, Y., Wang, F.: Convergence analysis of the anisotropic FEM for 2D time fractional variable coefficient diffusion equations on graded meshes. Appl. Math. Lett. 111, 106604 (2021)

    MathSciNet  Google Scholar 

  40. Li, M., Shi, D., Pei, L.: Convergence and superconvergence analysis of finite element methods for the time fractional diffusion equation. Appl. Numer. Math. 151, 141–160 (2020)

    MathSciNet  Google Scholar 

  41. Huang, C., Stynes, M.: A sharp \(\alpha \)-robust \(L^{\infty }(H^1)\) error bound for a time-fractional Allen-Cahn problem discretised by the Alikhanov \(L2\)-\(1_{\sigma }\) scheme and a standard FEM. (2021)

  42. Liao, H., Mclean, W., Zhang, J.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    MathSciNet  Google Scholar 

  43. Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform \(L1\) formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    MathSciNet  Google Scholar 

  44. H. Liao, W. Mclean, J. Zhang, A second-order scheme with nonuniform time steps for a linear reaction-sudiffusion problem. (2019). Preprint. arXiv:1803.09873v2

  45. Bramble, H., James, E., Joseph, P., Steinbach, O.: On the stability of the \(L^2\) projection in \(H^1(\Omega )\). Math. Comput. 71(237), 147–156 (2002)

    ADS  Google Scholar 

  46. Thomée, Vidar: Galerkin finite element methods for parabolic problem. Springer, Berlin (2006)

    Google Scholar 

  47. Shi, D., Zhu, H.: The superconvergence analysis of an anisotropic finite element. J. Syst. Sci. Complex. 18(4), 478–487 (2005)

    MathSciNet  Google Scholar 

  48. Ren, J., Liao, H., Zhang, J., Zhang, Z.: Sharp \(H^1\)-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. arXiv preprint, arXiv:1811.08059

  49. Lin, Q., Lin, J.: Finite element methods: accuracy and improvement. Science Press, Beijing (2006)

    Google Scholar 

  50. Zhang, C., Vandewalle, S.: Stability analysis of Volterra delay-integro-differential equations and their backward differentiation time discretization. J. Comput. Appl. Math. 164, 797–814 (2004)

    ADS  MathSciNet  Google Scholar 

  51. Shi, D., Mao, S., Chen, S.: An anisotropic nonconforming finite element with some superconvergence results. J. Comput. Math. 23, 261–274 (2005)

    MathSciNet  Google Scholar 

  52. Zhang, H., Yang, X.: Superconvergence analysis of nonconforming finite element method for time-fractional nonlinear parabolic equations on anisotropic meshes. Comput. Math. Appl. 77, 2707–2724 (2019)

    MathSciNet  Google Scholar 

  53. Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    ADS  MathSciNet  Google Scholar 

  54. Li, M., Huang, C., Jiang, F.: Galerkin finite element method for higher dimensional multi-term fractional diffusion equation on non-uniform meshes. Appl. Anal. 96(8), 1269–1284 (2017)

    MathSciNet  Google Scholar 

  55. Tan, T., Bu, W.P., Xiao, A.G.: L1 method on nonuniform meshes for linear time-fractional diffusion equations with constant time delay. J. Sci. Comput. 92(3), 1–26 (2022)

    MathSciNet  Google Scholar 

Download references

Funding

The work is supported by the China Postdoctoral Science Foundation (2023T160589), National Natural Science Foundation of China (Nos. 11801527, 11971416), Natural Science Foundation of Henan Province (222300420256), Training Plan of Young Backbone Teachers in Colleges of Henan Province (No. 2020GGJS230), Henan University Science and Technology Innovation Talent support program (19HASTIT025).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Shanshan Peng, Meng Li, Yanmin Zhao, Fawang Liu, and Fangfang Cao. The first draft of the manuscript was written by Shanshan Peng, Meng Li, and Yanmin Zhao, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Meng Li or Yanmin Zhao.

Ethics declarations

Ethical approval and consent to participate

Not applicable

Consent for publication

All authors consent for publication.

Competing interests

The authors declare no competing interests.

Human and animal rights and informed consent

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Li, M., Zhao, Y. et al. Unconditionally convergent and superconvergent finite element method for nonlinear time-fractional parabolic equations with distributed delay. Numer Algor 95, 1643–1714 (2024). https://doi.org/10.1007/s11075-023-01624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01624-8

Keywords

Navigation