Skip to main content
Log in

Novel Numerical Approach for Time Fractional Equations with Nonlocal Condition

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A numerical method for solving inhomogeneous nonlocal time fractional convection-diffusion-reaction equations with variable coefficients has been developed. The fractional time operator is taken in the sense of the modified operator with the Mittag-Leffler kernel. The numerical method is based on the modified Gauss elimination with Taylor’s expansion. Through rigorous analysis, it has been proved that the given method is unconditionally stable and second-order convergent in space and time. The numerical results for three test problems illustrate the efficiency and validity of the theoretical estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility Statement

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Al-Refai, M.: D, pp. 0218-348X. Baleanu, On an Extension of the Operator with Mittag-Leffler Kernel, Fractals (2022)

    Google Scholar 

  2. Alvarado, D.A.G., Galeano, C.H., Mantilla, J.M.: Computational examples of reaction-convection-diffusion equations solution under the influence of fluid flow: First example. Appl. Math. Model. 36, 5029–5045 (2012)

    Article  MathSciNet  Google Scholar 

  3. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  4. Bouziani, A.: On a class of parabolic equations with a nonlocal boundary condition. Bulletins de l’Académie Royale de Belgique 10, 61–77 (1999)

    MathSciNet  Google Scholar 

  5. Augeraud, E.V., Choquet, C., Comte, É.: Optimal buffer zone for the control of groundwater pollution from agricultural activities. Appl. Math. Optim. 84, 51–83 (2021)

    Article  MathSciNet  Google Scholar 

  6. Caputo, M., Cametti, C.: Diffusion with memory in two cases of biological interest. J. Theor. Biol. 254, 697–703 (2008)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  7. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  8. Dashtian, H., Bakhshian, S., Hajirezaie, S., Nicot, J.P., Hosseini, S.A.: Convection-diffusion-reaction of \(CO_2\)-enriched brine in porous media: A pore-scale study. Comput. Geosci. 125, 19–29 (2019)

    Article  ADS  CAS  Google Scholar 

  9. Day, W.A.: Parabolic equations and thermodynamics. Quart. Appl. Math. 50, 523–533 (1992)

    Article  MathSciNet  Google Scholar 

  10. Dehghan, M.: Implicit collocation techniques for heat equation with non-classic initial condition. Int. J. Nonlinear Sci. Numer. Simu. 7, 461–466 (2006)

    Google Scholar 

  11. Dehghan, M., Manafian, J., Saadatmandi, J.A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 26, 448–479 (2010)

    Article  MathSciNet  Google Scholar 

  12. Eslahchi, M.R., Dehghan, M.: Application of Taylor series in obtaining the orthogonal operational matrix. Comput. Math. Appl. 61, 2596–2604 (2011)

    Article  MathSciNet  Google Scholar 

  13. Goufo, E.F.D.: Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Bergers Equation. Math. Model. Anal. 21, 188–198 (2016)

    Article  MathSciNet  Google Scholar 

  14. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  15. Karatay, I., Bayramoğlu, S.R., Sahin, A.: Implicit difference approximation for the time fractional heat equation with the nonlocal condition. Appl. Numer. Math. 61, 1281–1288 (2011)

    Article  MathSciNet  Google Scholar 

  16. Karatay, I., Bayramoğlu, S.R., Yildiz, B., Köklüce, B.: Matrix stability of the difference schemes for nonlocal boundary value problems for parabolic differential equations. Int. J. Phys. Sci. 6, 819–827 (2011)

    Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. North-HollandMath. Stud. 204, 69–133 (2006)

    MathSciNet  Google Scholar 

  18. Lakestani, M., Dehghan, M., Irandoust-Pakchin, S.: The construction of operational matrix of fractional derivatives using B-spline functions. Commun. Nonlinear Sci. Numer. Simul. 17, 1149–1162 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E. 66, 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Lotfi, S. A. Yousefi, M. Dehghan, Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule, J. Comput. Appl. Math. /textbf250 143–160 (2013)

  21. Magin, R.L.: Fractional Calculus in Bioengineering. Crit. Rev. Biomed. Eng. 32, 1–104 (2004)

    Article  PubMed  Google Scholar 

  22. Mainardi, F.: Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, New York (1997)

    Chapter  Google Scholar 

  23. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    Google Scholar 

  24. Moraca, N.: Bounds for norms of the matrix inverse and the smallest singular value. Linear Algebra Appl. 429, 2589–2601 (2008)

    Article  MathSciNet  Google Scholar 

  25. Neytcheva, M.: On element-by-element Schur complement approximations. Linear Algebra Appl. 434, 2308–2324 (2011)

    Article  MathSciNet  Google Scholar 

  26. Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  27. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  28. Poinsot, T., Veynante, D.: Theortical and Numerical Combustion, 2nd edn. R T Edwards, Portland (2005)

    Google Scholar 

  29. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)

    Article  MathSciNet  Google Scholar 

  30. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993)

    Google Scholar 

  31. Sengupta, S., Sengupta, T.K., Puttam, J.K., Vajjala, K.S.: Global spectral analysis for convection-diffusion-reaction equation in one and two-dimensions: Effects of numerical anti-diffusion and dispersion. J. Comput. Phys. 408,(2020). https://doi.org/10.1016/j.jcp.2020.109310

  32. Tatari, M., Dehghan, M.: On the solution of the nonlocal parabolic partial differential equations via radial basis functions. Appl. Math. Model. 33, 1729–1738 (2009)

    Article  MathSciNet  Google Scholar 

  33. Wang, F., Wang, C., Chen, Z.: Local knot method for 2D and 3D convection-diffusion-reaction equations in arbitrary domains. Appl. Math. Lett. 105, 1–7 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors appreciate the helpful feedback and ideas from the anonymous reviewers. The first author is grateful to UGC, New Delhi, India (award letter No. 1282/(CSIR-UGC NET JUNE 2019)) for providing financial support, and the second author is thankful to CSIR, New Delhi, India (award letter No. 09/719(0096)/2019-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komal Deswal.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest to declare that are relevant to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taneja, K., Deswal, K., Kumar, D. et al. Novel Numerical Approach for Time Fractional Equations with Nonlocal Condition. Numer Algor 95, 1413–1433 (2024). https://doi.org/10.1007/s11075-023-01614-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01614-w

Keywords

AMS subject classifications.

Navigation