Skip to main content
Log in

Modified anti-Gaussian quadrature formulae of Chebyshev type

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In a simple way, we prove that there is no positive measure \(d\sigma \) on the interval [ab] such that the corresponding modified anti-Gaussian quadrature formula \(\breve{\mathcal G}^{(\gamma )}_{\ell +1}=\breve{\mathcal G}^{(\gamma _\ell )}_{\ell +1}\) is also a Chebyshev quadrature formula. In the special case, this result applies to the corresponding anti-Gaussian quadrature formula \(\breve{\mathcal G}_{\ell +1}\). The latter is recently proved in a different way in Notaris [14, Theorem 2.3]. We also show that the only positive and even measure \(d\sigma (x)=d\sigma (-x)\) on the symmetric interval \([-a,a]\), for which the modified anti-Gaussian quadrature formula \(\breve{\mathcal G}^{(\gamma )}_{\ell +1}=\breve{\mathcal G}^{(\gamma _\ell )}_{\ell +1}\) has the form \(\int _{-a}^{a}f(x)\,d\sigma (x)=\frac{\mu _0}{2}[f(-a)+f(a)]+R^{(\gamma _\ell )}_2(f)\) for \(\ell =1\) and \(\int _{-a}^{a}f(x)\,d\sigma (x)= w_1 f(-a)+w \sum _{k=1}^{\ell -1} f(t_k) +w_1 f(a)+R^{(\gamma _\ell )}_{\ell +1}(f)\) for all \(\ell \ge 2\), is the measure \(d\sigma (x)=(a^2-x^2)^{-1/2}\,dx\). This result is a generalization of the one for the anti-Gaussian quadrature formula \(\breve{\mathcal G}_{\ell +1}\) in Notaris [14, Theorem 3.1] to the modified anti-Gaussian quadrature formulas \(\breve{\mathcal G}^{(\gamma )}_{\ell +1}=\breve{\mathcal G}^{(\gamma _\ell )}_{\ell +1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

Notes

  1. In this case we have (cf. Gautschi [5, Tab. 1.1, p. 29]): \(\alpha _0=0,\beta _0=\pi , \alpha _1=0, \beta _1=1/2, \alpha _k=0, \beta _k=1/4\ (k>1)\).

References

  1. Calvetti, D., Reichel, L.: Symmetric Gauss-Lobatto and modified anti-Gauss rules. BIT Numer. Math. 43, 541–554 (2003)

    Article  MathSciNet  Google Scholar 

  2. Calvetti, D., Golub, G.H., Gragg, W.B., Reichel, L.: Computation of Gauss-Kronrod rules. Math. Comp. 69, 1035–1052 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ehrich, S.: On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas. J. Comput. Appl. Math. 140, 291–299 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gautschi, W.: Advances in Chebyshev quadrature, in Numerical Analysis (G. A. Watson, ed.), Proc. Dundee Conf. on Numerical Analysis, Lecture Notes in Math. 506, Springer-Verlag, Berlin, 100–121 (1976)

  5. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  6. Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comp. 23, 221–230 (1969)

    Article  MathSciNet  Google Scholar 

  7. Hascelik, A.I.: Modified anti-Gauss and degree optimal average formulas for Gegenbauer measure. Appl. Numer. Math. 58, 171–179 (2008)

    Article  MathSciNet  Google Scholar 

  8. Kahaner, D.K., Monegato, G.: Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights. Z. Angew. Math. Phys. 29, 983–986 (1978)

    Article  MathSciNet  Google Scholar 

  9. Kronrod, A.S.: Integration with control of accuracy. Soviet Phys. Dokl. 9, 17–19 (1964)

    ADS  MathSciNet  Google Scholar 

  10. Laurie, D.P.: Stratified sequences of nested quadrature formulas. Quaest. Math. 15, 365–384 (1992)

    Article  MathSciNet  Google Scholar 

  11. Laurie, D.P.: Anti-Gaussian quadrature formulas. Math. Comp. 65, 739–747 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. Laurie, D.P.: Calculation of Gauss-Kronrod quadrature rules. Math. Comp. 66, 1133–1145 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. Notaris, S.E.: Gauss-Kronrod quadrature formulae - a survey of fifty years of research. Electron. Trans. Numer. Anal. 45, 371–404 (2016)

    MathSciNet  Google Scholar 

  14. Notaris, S.E.: Anti-Gaussian quadrature formulae of Chebyshev type. Math. Comp. 91, 2803–2816 (2022)

    MathSciNet  Google Scholar 

  15. Patterson, T.N.L.: Stratified nested and related quadrature rules. J. Comput. Appl. Math. 112, 243–251 (1999)

    Article  MathSciNet  Google Scholar 

  16. Peherstorfer, F.: On positive quadrature formulas, in: Numerical Integration IV, eds. H. Brass, G. Hämmerlin, Intern. Ser. Numer. Math. # 112, Birkhäuser, Basel (1993) 297–313

  17. Peherstorfer, F.: Positive quadrature formulas III: asymptotics of weights. Math. Comp. 77, 2241–2259 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. Peherstorfer, F., Petras, K.: Ultraspherical Gauss-Kronrod quadrature is not possible for \(\lambda >3\). SIAM J. Numer. Anal. 37, 927–948 (2000)

    Article  MathSciNet  Google Scholar 

  19. Peherstorfer, F., Petras, K.: Stieltjes polynomials and Gauss-Kronrod quadrature for Jacobi weight functions. Numer. Math. 95, 689–706 (2003)

    Article  MathSciNet  Google Scholar 

  20. Reichel, L., Spalević, M.M.: A new representation of generalized averaged Gauss quadrature rules. Appl. Numer. Math. 165, 614–619 (2021)

    Article  MathSciNet  Google Scholar 

  21. Reichel, L., Spalević, M. M.: Generalized averaged Gaussian quadrature formulas: properties and applications, J. Comput. Appl. Math. 410, Art. 114232 (2022),

  22. Spalević, M.M.: On generalized averaged Gaussian formulas. Math. Comp. 76, 1483–1492 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Szegő, G.: Orthogonal Polynomials, 4th edn. Amer. Math. Society, Providence (1975)

    Google Scholar 

Download references

Acknowledgements

The author is indebted to Lothar Reichel on the discussions about the subjects in the last decade.

Funding

The research of M. M. Spalević is supported in part by the Serbian Ministry of Science, Technological Development, and Innovations, according to Contract 451-03-47/2023-01/200105 dated on 3 February, 2023.

Author information

Authors and Affiliations

Authors

Contributions

The author is the only contributor on the paper.

Corresponding author

Correspondence to Miodrag M. Spalević.

Ethics declarations

Ethical approval

The author agrees that this manuscript has followed the rules of ethics presented in the journal’s Ethical Guidelines for Journal Publication.

Human and animal ethics

Not applicable

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Prof. Lothar Reichel on the occasion of his 70th birthday.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spalević, M.M. Modified anti-Gaussian quadrature formulae of Chebyshev type. Numer Algor 95, 1347–1357 (2024). https://doi.org/10.1007/s11075-023-01611-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01611-z

Keywords

Mathematics Subject Classification (2010)

Navigation