Skip to main content
Log in

Accelerated iterative algorithms for the Cauchy problem in steady-state anisotropic heat conduction

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the framework of stationary anisotropic heat conduction (the Laplace-Beltrami equation) without heat sources, we investigate both theoretically and numerically the acceleration of the two iterative algorithms of Kozlov et al. (U.S.S.R. Computational Mathematics and Mathematical Physics 31:45–52, 1991) for the accurate, convergent and stable reconstruction of the missing temperature and normal heat flux on an inaccessible boundary of the domain occupied by a solid from the knowledge of Cauchy data on the remaining and accessible boundary. For each of the two algorithms with relaxation studied, this inverse Cauchy problem for the Laplace-Beltrami equation with exact data is transformed into an equivalent fixed point problem for an associated operator that is defined on and takes values in a suitable function space, and also accounts for the relaxation parameter. Consequently, the convergence of each relaxation algorithm reduces to analysing the properties of the corresponding operator and this enables us to determine the admissible range for the relaxation parameter, as well as a criterion for selecting its optimal value at each iteration, for each iterative procedure and exact Cauchy data. In case of perturbed Cauchy data, regularisation is achieved by terminating the iteration according to the discrepancy principle. The numerical implementation is realised for two-dimensional homogeneous anisotropic solids using the finite element method and confirms a significant reduction in the number of iterations and hence CPU time required for the two relaxation algorithms proposed to achieve convergence, for both exact and perturbed Cauchy data, provided that the dynamical selection of the optimal value for the relaxation parameter is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of supporting data

Not applicable

References

  1. Hadamard, J.: Lectures on Cauchy Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923)

    Google Scholar 

  2. V.A. Kozlov, V.G. Mazya, A.V. Fomin, An iterative method for solving the Cauchy problem for elliptic equations. Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki 31 64–74, 1991. English translation: U.S.S.R. Comput. Math. Math. Phys. 31 45–52, 1991

  3. Mera, N.S., Elliott, L., Ingham, D.B., Lesnic, D.: The boundary element solution for the Cauchy steady heat conduction problem in an anisotropic medium. Int. J. Numer. Methods Eng. 49, 481–499 (2000)

    Article  Google Scholar 

  4. Mera, N.S., Elliott, L., Ingham, D.B., Lesnic, D.: An iterative algorithm for singular Cauchy problems for the steady state anisotropic heat conduction equation. Eng. Anal. Bound. Elem. 26, 157–168 (2002)

    Article  Google Scholar 

  5. Johansson, T.: An iterative procedure for solving a Cauchy problem for second order elliptic equations. Math. Nachr. 272, 46–54 (2004)

    Article  MathSciNet  Google Scholar 

  6. Andrieux, S., Ben Abda, A., Baranger, T.N.: Data completion via an energy error functional. C. R. Mécanique 333, 171–177 (2005)

    Article  Google Scholar 

  7. Andrieux, S., Baranger, T.N., Ben Abda, A.: Solving Cauchy problems by minimizing an energy-like functional. Inverse Probl. 22, 115–133 (2006)

    Article  MathSciNet  Google Scholar 

  8. Rischette, R., Baranger, T.N., Debit, N.: Numerical analysis of an energy-like minimization method to solve the Cauchy problem with noisy data. J. Comput. Appl. Math. 235, 3257–3269 (2011)

    Article  MathSciNet  Google Scholar 

  9. Rischette, R., Baranger, T.N., Andrieux, S.: Regularization of the noisy Cauchy problem solution approximated by an energy-like method. Int. J. Numer. Methods Eng. 95, 271–287 (2013)

    Article  MathSciNet  Google Scholar 

  10. Chakib, A., Nachaoui, A.: Convergence analysis for finite element approximation to an inverse Cauchy problems. Inverse Probl. 22, 1191–1206 (2006)

    Article  MathSciNet  Google Scholar 

  11. Aboulaïch, R., Ben Abda, A., Kallel, M.: Missing boundary data reconstruction via an approximate optimal control. Inverse Probl. Imaging 2(4), 411–426 (2008)

    Article  MathSciNet  Google Scholar 

  12. Hào, D.N., Johansson, B.T., Lesnic, D., Hien, P.M.: A variational method and approximations of a Cauchy problem for elliptic equations. J. Algorithm. Comput. Technol. 4(1), 89–119 (2010)

    Article  MathSciNet  Google Scholar 

  13. Azaïez, M., Ben Belgacem, F., Du, D.T., Jelassi, F.: A finite element model for the data completion problem: analysis and assessment. Inverse Probl. Sci. Eng. 19(8), 1063–1086 (2011)

    Article  MathSciNet  Google Scholar 

  14. Habbal, A., Kallel, M.: Data completion problems solved as Nash games. J. Phys. Conf. Ser. 386, 012004 (2012)

    Article  Google Scholar 

  15. Habbal, A., Kallel, M.: Neumann-Dirichlet Nash strategies for the solution of elliptic Cauhcy problems. SIAM J. Control Optim. 51(5), 4066–4083 (2013)

    Article  MathSciNet  Google Scholar 

  16. Dardé, J.: Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems. Inverse Probl.Imaging 10(2), 379–407 (2016)

    Article  MathSciNet  Google Scholar 

  17. Baravdish, G., Borachok, I., Chapko, R., Johansson, B.T., Slodička, M.: An iterative method for the Cauchy problem for second-order elliptic equations. Int. J. Mech. Sci. 142–143, 216–223 (2018)

    Article  Google Scholar 

  18. Caubet, F., Dardé, J.: A dual approach to Kohn-Vogelius regularization applied to data completion problem. Inverse Probl. 36(6), 065008 (2020)

    Article  MathSciNet  Google Scholar 

  19. Marin, L.: Landweber-Fridman algorithms for the Cauchy problem in steady-state anisotropic heat conduction. Math. Mech. Solids 25(6), 1340–1363 (2020)

    Article  MathSciNet  Google Scholar 

  20. Voinea-Marinescu, A.-P., Marin, L., Delvare, F.: BEM-fading regularization algorithm for Cauchy problems in 2D anisotropic heat conduction. Numer. Algorithm. 88(4), 1667–1702 (2021)

    Article  MathSciNet  Google Scholar 

  21. Bucataru, M., Cîmpean, I., Marin, L.: A gradient-based regularization algorithm for the Cauchy problem in steady-state anisotropic heat conduction. Comput. Math. Appl. 119, 220–240 (2022)

    Article  MathSciNet  Google Scholar 

  22. Jourhmane, M., Nachaoui, A.: Convergence of an alternating method to solve the Cauchy problem for Poisson’s equation. Appl. Anal. 81, 1065–1083 (2002)

    Article  MathSciNet  Google Scholar 

  23. Marin, L., Johansson, B.T.: A relaxation method of an alternating iterative algorithm for the Cauchy problem in linear isotropic elasticity. Comput. Methods Appl. Mech. Eng. 199(49–52), 3179–3196 (2010)

    Article  MathSciNet  Google Scholar 

  24. Morozov, V.A.: On the solution of functional equations by the method of regularization. Dokl. Math. 167(3), 510–512 (1966)

    MathSciNet  Google Scholar 

  25. Özişik, M.N.: Heat Conduction. John Wiley & Sons, New York (1993)

    Google Scholar 

  26. Jourhmane, M., Lesnic, D., Mera, N.S.: Relaxation procedures for an iterative algorithm for solving the Cauchy problem for the Laplace equation. Eng. Anal. Bound. Elem. 28, 655–665 (2004)

    Article  Google Scholar 

  27. L. Marin, Stable boundary and internal data reconstruction in two-dimensional anisotropic heat conduction Cauchy problems using relaxation procedures for an iterative MFS algorithm. CMC: Comput. Mater. Contin. 17(3) 233–274, 2010

  28. Hörmander, L.: The Analysis of Partial Differential Operators I. Springer-Verlag, Berlin (2003)

    Book  Google Scholar 

  29. Gockenbach, M.: Understanding and Implementing the Finite Element Method. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  30. Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Ind. 3, 253–315 (1993)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.B. and L.M. wrote the main manuscript text, whilst M.B. prepared all figures and tables. Both authors reviewed the manuscript.

Corresponding author

Correspondence to Liviu Marin.

Ethics declarations

Ethics approval

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucataru, M., Marin, L. Accelerated iterative algorithms for the Cauchy problem in steady-state anisotropic heat conduction. Numer Algor 95, 605–636 (2024). https://doi.org/10.1007/s11075-023-01583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01583-0

Keywords

Navigation