Skip to main content

On the Alternating Method for Cauchy Problems and Its Finite Element Discretisation

  • Conference paper
  • First Online:
Applied Inverse Problems

Abstract

We consider the alternating method (Kozlov, V. A. and Maz’ya, V. G., On iterative procedures for solving ill-posed boundary value problems that preserve differential equations, Algebra i Analiz 1 (1989), 144–170. (English transl.: Leningrad Math. J. 1 (1990), 1207–1228.)) for the stable reconstruction of the solution to the Cauchy problem for the stationary heat equation in a bounded Lipschitz domain. Using results from Baranger, T. N. and Andrieux, S., (Constitutive law gap functionals for solving the Cauchy problem for linear elliptic PDE, Appl. Math. Comput. 218 (2011), 1970–1989.), we show that the alternating method can be equivalently formulated as the minimisation of a certain gap functional, and we prove some properties of this functional and its minimum. It is shown that the original alternating method can be interpreted as a method for the solution of the Euler–Lagrange first-order optimality equations for the gap functional. Moreover, we show how to discretise this functional and equations via the finite element method (FEM). The error between the minimum of the continuous functional and the discretised one is investigated, and an estimate is given between these minima in terms of the mesh size and the error level in the data. Numerical examples are included showing that accurate reconstructions can be obtained also with a non-constant heat conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alves, C. J. S. and Silvestre, A. L., On the determination of point-forces on a Stokes system, Math. Comput. Simul. 66 (2004), 385–397.

    Google Scholar 

  2. Andrieux, S. and Ben Abda, A., Identification de fissures planes par une donnée au bord unique: un procédé direct de localisation et d’identification, C.R. Acad. Sci. Paris 315, série I, 1992.

    Google Scholar 

  3. Andrieux, S., Baranger, T. N. and Ben Abda, A., Solving Cauchy problems by minimizing an energy-like functional, Inv. Probl. 22 (2006), 115–133.

    Google Scholar 

  4. Avdonin, S., Kozlov, V., Maxwell, D. and Truffer, M., Iterative methods for solving a nonlinear boundary inverse problem in glaciology, J. Inv. Ill-Posed Probl. 17 (2009), 239–258.

    Google Scholar 

  5. Baranger, T. N. and Andrieux, S., Constitutive law gap functionals for solving the Cauchy problem for linear elliptic PDE, Appl. Math. Comput. 218 (2011), 1970–1989.

    Google Scholar 

  6. Bastay, G., Johansson, T., Kozlov, V. and Lesnic, D., An alternating method for the stationary Stokes system, ZAMM 86 (2006), 268–280.

    Google Scholar 

  7. Baumeister, J. and Leitão, A., On iterative methods for solving ill-posed problems modeled by partial differential equations, J. Inv. Ill-Posed Probl. 9 (2001), 13–29.

    Google Scholar 

  8. Beilina, L., Klibanov, M. V. and Kokurin, M. Yu., Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem, J. Math. Sci. 167 (2010), 279–325.

    Google Scholar 

  9. Bourgeois, L. and Dardé, J., A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data, Inv. Probl. 26 (2010), 095016.

    Google Scholar 

  10. Calderón, A.-P., Uniqueness in the Cauchy problem for partial differential equations, Am. J. Math. 80 (1958), 16–36.

    Google Scholar 

  11. Cao, H., Klibanov, M. V. and Pereverzev, S. V., A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation, Inv. Probl. 25 (2009), 1–21.

    Google Scholar 

  12. Carleman, T., Les Fonctions Quasi Analytiques, Gauthier-Villars, Paris, 1926 (In French).

    Google Scholar 

  13. Carleman, T., Sur un problème d’unicité pur les systèmes d’équations aux dérivées partielles à deux variables indépendantes, (French) Ark. Mat. Astr. Fys. 26 (1939), 1–9.

    Google Scholar 

  14. Chapko, R. and Johansson, B. T., An alternating boundary integral based method for a Cauchy problem for Laplace equation in semi-infinite domains, Inv. Probl. Imaging 3 (2008), 317–333.

    Google Scholar 

  15. Colton, D. and Haddar, H., An application of the reciprocity gap functional to inverse scattering theory, Inv. Probl. 21 (2005), 383–398.

    Google Scholar 

  16. Dinh Nho Hào., Methods for Inverse Heat Conduction Problems, Peter Lang, Frankfurt/Main, 1998.

    Google Scholar 

  17. Engl, H. W. and Leitão, A., A Mann iterative regularization method for elliptic Cauchy problems, Numer. Funct. Anal. Optim. 22 (2001), 861–884.

    Google Scholar 

  18. Helsing, J. and Johansson, B. T., Fast reconstruction of harmonic functions from Cauchy data using integral equation techniques, Inv. Pr. Sci. Engn. 18 (2010), 381–399.

    Google Scholar 

  19. Johansson, B. T. and Lesnic, D., A relaxation of the alternating method for the reconstruction of a stationary flow from incomplete boundary data, Advances in Boundary Integral Methods - Proceedings of the Seventh UK Conference on Boundary Integral Methods, (Eds. H. Power, A. La Rocca and S. J. Baxter), University of Nottingham, UK, (2009), 161–169.

    Google Scholar 

  20. Jourhmane, M. and Nachaoui, A., An alternating method for an inverse Cauchy problem, Numer. Algorithms 21 (1999), 247–260.

    Google Scholar 

  21. Jourhmane, M. and Nachaoui, A., Convergence of an alternating method to solve the Cauchy problem for Poisson’s equation, Appl. Anal. 81 (2002), 1065–1083.

    Google Scholar 

  22. Jourhmane, M., Lesnic, D. and Mera, N. S., Relaxation procedures for an iterative algorithm for solving the Cauchy problem for the Laplace equation, Eng. Anal. Boundary Elements 28 (2004), 655–665.

    Google Scholar 

  23. Kozlov, V. A.  and Maz’ya, V. G., On iterative procedures for solving ill-posed boundary value problems that preserve differential equations, Algebra i Analiz 1 (1989), 144–170. (English transl.: Leningrad Math. J. 1 (1990), 1207–1228.)

    Google Scholar 

  24. Kozlov, V. A., Maz’ya, V. G. and Fomin, A. V., An iterative method for solving the Cauchy problem for elliptic equations, Zh. Vychisl. Mat. i Mat. Fiz. 31 (1991), 64–74. (English transl.: U.S.S.R. Comput. Math. and Math. Phys. 31 (1991), 45–52.)

    Google Scholar 

  25. Lavrentiev, M. M., Some Improperly Posed Problems of Mathematical Physics, Springer, Berlin, 1967.

    Google Scholar 

  26. Lesnic, D., Elliott, L. and Ingham, D. B., An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation, Eng. Anal. Bound. Elem. 20 (1997), 123–133.

    Google Scholar 

  27. Li, J., Xie, J. and Zou, J., An adaptive Finite Element reconstruction of distributed fluxes, Inv. Probl. 27 (2011), 075009.

    Google Scholar 

  28. Marin, L., Elliott, L., Ingham, D.B. and Lesnic, D., Boundary element method for the Cauchy problem in linear elasticity, Eng. Anal. Boundary Elem. 25 (2001), 783–793.

    Google Scholar 

  29. Maxwell, D., Truffer, M., Avdonin, S. and Stuefer, M., Determining glacier velocities and stresses with inverse methods: an iterative scheme, J. Glae 54 (2008), 888–898.

    Google Scholar 

  30. Mera, N. S., Elliott, L., Ingham, D. B. and Lesnic, D., The boundary element solution of the Cauchy steady heat conduction problem in an anisotropic medium, Int. J. Numer. Meth. Engng. 49 (2000), 481–499.

    Google Scholar 

  31. Payne, L. E., Improperly Posed Problems in Partial Differential Equations, Regional Conference Series in Applied Mathematics, No. 22, SIAM, Philadelphia, Pa., 1975.

    Google Scholar 

  32. Rischette, R., Analyse numerique d’une méthode énergétique pour la résolution du problème de Cauchy avec prise en compte des effets de bruits, Phd-thesis, INSA-Lyon, France, 2011.

    Google Scholar 

  33. Rischette, R., Baranger, T. N. and Debit, N., Numerical analysis of an energy-like minimization method to solve the Cauchy problem with noisy data, J. Comput. Appl. Math. 235 (2011), 3257–3269.

    Google Scholar 

  34. Vainikko, G. M. and Veretennikov, A. Y., Iteration Procedures in Ill-Posed Problems, Nauka Publ., Moscow, 1986 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thouraya N. Baranger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this paper

Cite this paper

Baranger, T.N., Johansson, B.T., Rischette, R. (2013). On the Alternating Method for Cauchy Problems and Its Finite Element Discretisation. In: Beilina, L. (eds) Applied Inverse Problems. Springer Proceedings in Mathematics & Statistics, vol 48. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7816-4_11

Download citation

Publish with us

Policies and ethics