Skip to main content
Log in

Two formulae with nodes related to zeros of Bessel functions for semi-infinite integrals: extending Gauss–Jacobi-type rules

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

For approximating integrals \(\varvec{\int _0^{\infty }\!\!} \varvec{x}^{\varvec{\alpha }}\varvec{f(x)dx}\) (\(\varvec{\alpha >-1}\)) over a semi-infinite interval \(\varvec{[0,\infty )}\) with a given function \(\varvec{f(x)}\), two formulae, one of them new and another associated with an existing formula, are presented. They are constructed in a limiting process to a semi-infinite interval \(\varvec{[0,\infty ]}\) with a linear transformation for a well-known approximation method, the Gauss–Jacobi (GJ) rule and its family rules: the Gauss–Jacobi–Radau (GR) and Gauss–Jacobi–Lobatto (GL) rules on a finite interval. This procedure was used in constructing our previous limit Clenshaw–Curtis-type formulae. The limit GJ formula (LGJ) constructed in this way uses as nodes zeros of the Bessel function \(\varvec{\varvec{J_{\alpha }(x)}}\) squared after multiplied by a positive constant a and the limit GR (LGR) (and limit GL (LGL)) formula those with zeros of \(\varvec{J_{\alpha +1}(x)}\). The LGJ formula is also shown to be derived from the formula developed by Frappier and Olivier (Math. Comp. 60:303–316, 1993) for an integral on \(\varvec{[0,\infty )}\). The LGR and LGL formulae give the same and new formula. We show that for a function f(z) analytic on a domain in the complex plane z and satisfying some appropriate conditions, there exists a constant \({d>0}\) such that the errors of both formulae are \(\varvec{O(e^{-2d/a})}\) as \(\varvec{a\rightarrow +0}\). The average of the LGJ and LGR formulae gives smaller quadrature errors than each formula. Numerical examples confirm these behaviors and show that the LGJ and LGR formulae give asymptotically the same quadrature errors of opposite sign. Consequently, the LGR formula behaves like an anti-LGJ formula in the same way as the Lobatto rule for integrals on \(\varvec{[-1,1]}\) behaving like the anti-Gauss rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of supporting data

Not applicable

References

  1. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Orland, FL (1984)

    MATH  Google Scholar 

  2. Sugiura, H., Hasegawa, T.: Extensions of Clenshaw-Curtis-type rules to integrals over a semi-infinite interval. Numer. Algorithms 90, 3–30 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hasegawa, T., Sugiura, H.: Error estimate for a corrected Clenshaw-Curtis quadrature rule. Numer. Math. 130, 135–149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Frappier, C., Olivier, P.: A quadrature formula involving zeros of Bessel functions. Math. Comp. 60, 303–316 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, London (1966)

    MATH  Google Scholar 

  6. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York, NY (1965)

    MATH  Google Scholar 

  7. Olver, F.W.J., Maximon, L.C.: DLMF: Chapter 10, Bessel functions. NIST (2022 Accessed 20 Jan 2022). https://dlmf.nist.gov/10/

  8. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50, 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Laurie, D.P.: Anti-Gaussian quadrature formulas. Math. Comp. 65, 739–747 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calvetti, D., Reichel, L.: Symmetric Gauss-Lobatto and modified anti-Gauss rules. BIT 43, 541–554 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Reichel, L., Spalević, M.M.: Averaged Gauss quadrature formulas: Properties and applications. J. Comput. Appl. Math., 114232 (2022)

  12. Gautschi, W.: Gauss-Radau formulae for Jacobi and Laguerre weight functions. Math. Comput. Simulation 54, 403–412 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gautschi, W.: High-order Gauss-Lobatto formulae. Numer. Algorithms 25, 213–222 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Szegő, G.: Orthogonal Polynomials. Colloquium Publications, vol. 23. American Mathematical Society, Providence, RI (1939). Reprint with corrections, 2003

  15. Gamelin, T.W.: Complex Analysis. Springer, New York, NY (2001)

    Book  MATH  Google Scholar 

  16. Frappier, C., Rahman, Q.I.: Une formule de quadrature pour les fonctions entières de type exponentiel. Ann. Sci. Math. Québec 10, 17–26 (1986)

    MathSciNet  MATH  Google Scholar 

  17. Ghanem, R.B.: Quadrature formula using zeros of Bessel functions as nodes. Math. Comp. 67, 323–336 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grozev, G.I., Rahman, Q.I.: A quadrature formula with zeros of Bessel functions as nodes. Math. Comp. 64, 715–725 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ogata, H.: A numerical integration formula based on the Bessel functions. Publ. Res. Inst. Math. Sci. 41, 949–970 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Sotirios E. Notaris for helpful comments for improving the presentation and for simplified proofs of Lemmas 3.1 and 4.1. We are grateful to the referee for his or her valuable comments for improving the presentation and on the generalized averaged Gaussian formula in [11].

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this work.

Corresponding author

Correspondence to Hiroshi Sugiura.

Ethics declarations

Ethical approval

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Frappier–Olivier formula and LGJ formula

This section shows that the LGJ formula is also derived from a formula (see (8.1) below, slightly modified with real \(\alpha >-1\)) proposed by Frappier and Olivier [4] (cf. [16,17,18]).

Theorem 8.1

(Frappier and Olivier) Let \(B_{\sigma }\) be the class of entire functions of exponential type \(\sigma \), bounded on the real axis. For all \(f\in B_{2\tau }\) such that \(f(x)=O(|x|^{-\delta })\), \(x\rightarrow \pm \infty \), with \(\delta >2\alpha +2\), there holds

$$\begin{aligned} \int _0^{\infty }\!\!x^{2\alpha +1}(f(x)+f(-x))\,dx= \frac{2}{\tau ^{2\alpha +2}}\sum _{l=1}^{\infty }\frac{j_{\alpha ,l}^{2\alpha }}{[J_{\alpha }{}'(j_{\alpha ,l})]^2} \Big [f\Big (\frac{j_{\alpha ,l}}{\tau }\Big )+ f\Big (-\frac{j_{\alpha ,l}}{\tau }\Big )\Big ], \end{aligned}$$
(8.1)

where \(j_{\alpha ,l}\) (\(l=\pm 1,\pm 2,\dots \)) are the zeros of the entire function \(J_{\alpha }(z)/z^{\alpha }\), ordered such that \(j_{\alpha ,-l}=j_{\alpha ,l}\) and \(j_{\alpha ,1}<j_{\alpha ,2}<\dots \).

Ogata [19] gives a formula for the integrals \(\int _{-\infty }^{\infty }|x|^{2\nu +1}\,f(x)\,dx\). Splitting the range \((-\infty ,\infty )\) into \((-\infty ,0]\) and \([0,\infty )\) and setting \(t=-x\) in the first integral give the same formula as the right-hand side of (8.1) (the equality is replaced by the approximation \(\cong \)).

We show that the LGJ formula (1.2) is obtained from (8.1). Applying the change of variables \(x=t^2\) to the integral If in (1.1) gives

$$\begin{aligned} \int _0^{\infty }\!\!x^{\alpha }f(x)\,dx=\int _0^{\infty }\!\!2t^{2\alpha +1}f(t^2)\,dt =\int _0^{\infty }\!\!t^{2\alpha +1}[f(t^2)+f((-t)^2)]\,dt. \end{aligned}$$
(8.2)

Using the relation (8.1) in the rightmost-hand side of (8.2), we have

$$\begin{aligned} If=\int _0^{\infty }\!\!x^{\alpha }f(x)\,dx\cong \frac{4}{\tau ^{2\alpha +2}}\sum _{l=1}^{\infty }\frac{j_{\alpha ,l}^{2\alpha }}{[J_{\alpha }{}'(j_{\alpha ,l})]^2} f\Big (\frac{j_{\alpha ,l}^2}{\tau ^2}\Big ). \end{aligned}$$
(8.3)

Setting \(\tau =\pi /h\) in the rightmost-hand side of (8.3) gives (1.2) with (1.3).

Appendix B: Proof of Proposition 1.2

In this section, Proposition 1.2 is proved. We claim that for \(\alpha =-1/2\), and for nodes \(x_{h,l}^{{\textrm{LGJ}}}\) and weights \(w_{h,l}^{{\textrm{LGJ}}}\) of the LGJ formula and \(x_{h,l}^{{\textrm{LGR}}}\) and \(w_{h,l}^{{\textrm{LGR}}}\) of the LGR formula, we have

$$\begin{aligned} x_{h,l}^{{\textrm{LGJ}}}&=\Big [h\Big (l-\frac{1}{2}\Big )\Big ]^2,\quad w_{h,l}^{{\textrm{LGJ}}}=2h\quad (l\ge 1),\end{aligned}$$
(9.1)
$$\begin{aligned} x_{h,0}^{{\textrm{LGR}}}&=0,\quad w_{h,0}^{{\textrm{LGR}}}=h,\quad x_{h,l}^{{\textrm{LGR}}}=(hl)^2,\quad w_{h,l}^{{\textrm{LGR}}}=2h\quad (l\ge 1). \end{aligned}$$
(9.2)

To verify (9.1) and (9.2), we note that the Bessel function \(J_{-1/2}(x)\) and its zeros \(j_{-1/2,l}\) are given, respectively, by

$$\begin{aligned} J_{-1/2}(x)=\Big (\frac{2}{\pi x}\Big )^{1/2}\cos x,\quad j_{-1/2,l}=(l-1/2)\pi \quad (l\ge 1), \end{aligned}$$
(9.3)

and \(J_{1/2}(x)\) and \(j_{1/2,l}\) by

$$\begin{aligned} J_{1/2}(x)=\Big (\frac{2}{\pi x}\Big )^{1/2}\sin x, \qquad j_{1/2,l}=l\pi \quad (l\ge 0), \end{aligned}$$
(9.4)

(cf. [4, 5, pp. 54–55]). In view of (9.3) and (9.4), it follows that

$$\begin{aligned} J_{-1/2}'(j_{-1/2,l})=(-1)^l\Big [\frac{2}{\pi ^2(l-1/2)}\Big ]^{1/2}\!\!,\ \ J_{1/2}'(j_{1/2,l})=(-1)^l\Big (\frac{2}{\pi ^2l}\Big )^{1/2}\!\!. \end{aligned}$$
(9.5)

We verify (9.1) by using (9.3) and the first relation of (9.5) in (1.3). We verify (9.2) by using (9.4) and the second relation of (9.5) in (1.5) and (1.6) and since \(\Gamma (1/2)\Gamma (3/2)=\pi /2\).

In view of (1.1), (9.1) and (9.2), it follows that

$$\begin{aligned} \int _0^{\infty }\!\!x^{-1/2}f(x)\,dx&\cong 2h\sum _{k=1}^{\infty }f\Big (\Big (h\Big (l-\frac{1}{2}\Big )\Big )^2\Big ),\end{aligned}$$
(9.6)
$$\begin{aligned} \int _0^{\infty }\!\!x^{-1/2}f(x)\,dx&\cong 2h\sum _{l=0}^{\infty }\!'f((hl)^2). \end{aligned}$$
(9.7)

Proposition 1.2 is established by the transformation \(x=t^2\) in the left-hand sides of (9.6) and (9.7).\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiura, H., Hasegawa, T. Two formulae with nodes related to zeros of Bessel functions for semi-infinite integrals: extending Gauss–Jacobi-type rules. Numer Algor 94, 1949–1981 (2023). https://doi.org/10.1007/s11075-023-01560-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01560-7

Keywords

Mathematics Subject Classification

Navigation