Skip to main content
Log in

A new self-adaptive iterative method for variational inclusion problems on Hadamard manifolds with applications

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The objective of this work is to design a new iterative method based on Armijo’s type-modified extragradient method for solving the inclusion problem \(\varvec{(A+B)^{-1}(0)}\), where \(\varvec{A}\) is a maximal monotone vector field and \(\varvec{B}\) is a continuous monotone vector field. The proposed method requires one projection at each iteration, reducing the cost of computational viewpoint and improving the convergence rate. A convergence theorem is established for the proposed extragradient method, significantly improving existing results. We provide concrete examples of Hadamard manifolds and convergency for numerical confirmation. Moreover, we demonstrate convergence results for the variational inequality problems in which the vector field’s monotonicity can be removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Code Availability

The MatLab codes are no longer available in repositories but are available from the corresponding author on reasonable request.

References

  1. Chang, S.S.: Set-valued variational inclusions in Banach spaces. J. Math. Annal. Appl. 248, 438–454 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cho, S.Y. (2013) Strong convergence of an iterative algorithm for sums of two monotone operators. Journal Fixed Point Theory, vol. 2013

  3. Takahashi, W. (2000) Nonlinear functional analysis, fixed point theory and its applications. Yokohama Publisher

  4. Takahashi, S., Takahashi, W., Toyoda, M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147(1), 27–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sahu, D.R., Ansari, Q.H., Yao, J.C.: The prox-tikhonov-like forward-backward method and applications. Taiwan. J. Math. 19(2), 481–503 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Martinet, B.: Régularisation, d’inéquations variationelles par approximations succesives. Revue Franćaise D’informatique et de Recherche Opérationelle 3, 154–158 (1970)

    MATH  Google Scholar 

  7. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Anh, P.K., Vinh, N.T.: Self-adaptive gradient projection algorithms for variational inequalities involving non-lipschitz continuous operators. Numer. Algo. 81(3), 983–1001 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burachik, R.S., Millan, R.D.: A projection algorithm for non-monotone variational inequalities. Set-Valued and Variational Analysis 28(1), 149–166 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dinh, B.V., Muu, L.D.: Algorithms for a class of bilevel programs involving pseudomonotone variational inequalities. Acta Mathematica Vietnamica 38(4), 529–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control. Optim. 37(3), 765–776 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Thong, D.V., Van Hieu, D.: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 341, 80–98 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iusem, A., Svaiter, B.: A variant of korpelevich’s method for variational inequalities with a new search strategy. Optimization 42(4), 309–321 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody. 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  15. Ye, M., He, Y.: A double projection method for solving variational inequalities without monotonicity. Comput. Optim. Appl. 60(1), 141–150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Van Dinh, B., Manh, H.D., Thanh, T.T.H.: A modified Solodov-Svaiter method for solving nonmonotone variational inequality problems. Numerical Algorithms 90(4), 1715–1734 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ansari, Q.H., Babu, F.: Extragradient-type algorithm for non-monotone variational inequalities on Hadamard manifolds. Indian J Ind. Appl. Math. 11(2), 1–20 (2020)

    Google Scholar 

  18. Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Analysis: Theory, Methods & Applications 52(5), 1491–1498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. London Math. Soc. 79(3), 663–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, C., López, G., Martín-Márquez, V., Wang, J.H.: Resolvents of set-valued monotone vector fields in Hadamard manifolds. Set-Valued and Variational Analysis 19(3), 361–383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang, G.J., Huang, N.J.: Korpelevich’s method for variational inequality problems on Hadamard manifolds. J. Glob. Optim. 54(3), 493–509 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang, G.J., Wang, X., Liu, H.W.: A projection-type method for variational inequalities on Hadamard manifolds and verification of solution existence. Optimization 64(5), 1081–1096 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sahu, D.R., Babu, F., Sharma, S.: The S-iterative techniques on Hadamard manifolds and applications. J. Appl. Numer. Optim. 2, 353–371 (2020)

    Google Scholar 

  25. Ansari, Q.H., Babu, F., Li, X.B.: Variational inclusion problems in Hadamard manifolds. Journal of Nonlinear and Convex Analysis 19(2), 219–237 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Ferreira, O.P., Jean-Alexis, C., Piétrus, A.: Metrically regular vector field and iterative processes for generalized equations in Hadamard manifolds. J. Optim. Theory Appl. 175(3), 624–651 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ferreira, O.P., Pérez, L., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Glob. Optim. 31(1), 133–151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, J., Liu, S., Chang, X.: Modified Tseng’s extragradient methods for variational inequality on Hadamard manifolds. Appl. Anal. 100(12), 2627–2640 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Al-Homidan, S., Ansari, Q.H., Babu, F.: Halpern-and Mann-type algorithms for fixed points and inclusion problems on Hadamard manifolds. Numer. Funct. Anal. Optim. 40(6), 621–653 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ansari, Q.H., Babu, F., Sahu, D.: Iterative algorithms for system of variational inclusions in Hadamard manifolds. Acta Mathematica Scientia. 42(4), 1333–1356 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Khammahawong, K., Kumam, P., Chaipunya, P., Martínez-Moreno, J.: Tseng’s methods for inclusion problems on Hadamard manifolds. Optimization 71(15), 4367–4401 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Do Carmo, M.P., Flaherty Francis, J. (1992) Riemannian geometry, vol. 6. Birkhouser

  33. Sakai, T. (1996) Riemannian geometry, vol. 149. American Mathematical Soc

  34. Udriste, C.: Convex functions and optimization methods on Riemannian manifolds. Kluwer Academic Publishers (1994)

  35. da Cruz Neto, J.X., Ferreira, O.P., Pérez, L., Németh, S.Z.: Convex-and monotone-transformable mathematical programming problems and a proximal-like point method. J. Glob. Optim. 35(1), 53–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Andrade, J.S., Lopes, J.D.O., Souza, J.C.D.O.: An inertial proximal point method for difference of maximal monotone vector fields in Hadamard manifolds. J. Glob. Optim. 85, 941–968 (2023)

  37. Rapcsák, T. (1997) Smooth Nonlinear Optimization in \(\mathbb{R}^{n}\), vol. 19. Kluwer Academic Publishers

  38. Babu, F., Ali, A., Alkhaldi, A.H.: An extragradient method for non-monotone equilibrium problems on Hadamard manifolds with applications. Appl. Numer. Math. 180, 85–103 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sahu, D.R., Kumar, A., Kang, S.M.: Proximal point algorithms based on S-iterative technique for nearly asymptotically quasi-nonexpansive mappings and applications. Numerical Algorithms 86(4), 1561–1590 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankfully acknowlwdge the suggestions of the anonymous referee.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally and significantly in writing this paper.

Corresponding author

Correspondence to Babu Feeroz.

Ethics declarations

Competing of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D. R., S., Feeroz, B. & Shikher, S. A new self-adaptive iterative method for variational inclusion problems on Hadamard manifolds with applications. Numer Algor 94, 1435–1460 (2023). https://doi.org/10.1007/s11075-023-01542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01542-9

Keywords

Navigation