Skip to main content
Log in

Polynomial estimates for the method of cyclic projections in Hilbert spaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We study the method of cyclic projections when applied to closed and linear subspaces \({M_{i}}, i=1,\ldots, m\), of a real Hilbert space \(\mathcal {H}\). We show that the average distance to individual sets enjoys a polynomial behavior \(o(k^{-1/2})\) along the trajectory of the generated iterates. Surprisingly, when the starting points are chosen from the subspace \(\sum _{i=1}^{m}M_i^{\perp }\), our result yields a polynomial rate of convergence \(\mathcal {O}(k^{-1/2})\) for the method of cyclic projections itself. Moreover, if \(\sum _{i=1}^{m} M_i^{\perp }\) is not closed, then both of the aforementioned rates are best possible in the sense that the corresponding polynomial \(k^{1/2}\) cannot be replaced by \(k^{1/2+\varepsilon }\) for any \({\varepsilon } >0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Aragón Artacho, F.J., Campoy, R.: Optimal rates of linear convergence of the averaged alternating modified reflections method for two subspaces. Numer. Algorithms. 82, 397–421 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badea, C., Grivaux, S., Müller, V.: The rate of convergence in the method of alternating projections. Algebra i Analiz. 23, 1–30 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Badea, C., Seifert, D.: Ritt operators and convergence in the method of alternating projections. J. Approx. Theory. 205, 133–148 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Badea, C., Seifert, D.: Quantified asymptotic behaviour of Banach space operators and applications to iterative projection methods. Pure Appl. Funct. Anal. 2, 585–598 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Bargetz, C., Reich, S., Zalas, R.: Convergence properties of dynamic string-averaging projection methods in the presence of perturbations. Numer. Algorithms. 77, 185–209 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Cruz, J.Y.B., Nghia, T.T.A., Phan, H.M., Wang, X.: The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle. J. Approx. Theory. 185, 63–79 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauschke, H.H., Cruz, J.Y.B., Nghia, T.T.A., Phan, H.M., Wang, X.: Optimal rates of linear convergence of relaxed alternating projections and generalized Douglas-Rachford methods for two subspaces. Numer. Algorithms. 73, 33–76 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bauschke, H.H., Borwein, J.M., Lewis, A.S.: The method of cyclic projections for closed convex sets in Hilbert space, in Recent developments in optimization theory and nonlinear analysis (Jerusalem 1995). Contemp. Math. Amer. Math. Soc. Providence. RI. 204, 1–38 (1997)

    Google Scholar 

  11. Bauschke, H.H., Deutsch, F., Hundal, H.: Characterizing arbitrarily slow convergence in the method of alternating projections. Int. Trans. Oper. Res. 16, 413–425 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Borodin, P.A., Kopecká, E.: Alternating projections, remotest projections, and greedy approximation. J. Approx. Theory. 260, 105486 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    Book  MATH  Google Scholar 

  14. Cegielski, A.: Iterative methods for fixed point problems in Hilbert spaces, Lecture Notes in Mathematics, vol. 2057. Springer, Heidelberg (2012)

    Google Scholar 

  15. Cohen, G.: Iterates of a product of conditional expectation operators. J. Funct. Anal. 242, 658–668 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Crouzeix, M.: A functional calculus based on the numerical range: applications. Linear Multilinear Algebra. 56, 81–103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deutsch, F.: Best approximation in inner product spaces, vol. 7. Springer Verlag, New York (2001)

    Book  MATH  Google Scholar 

  18. Deutsch, F., Hundal, H.: Slow convergence of sequences of linear operators II: arbitrarily slow convergence. J. Approx. Theory. 162, 1717–1738 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Deutsch, F., Hundal, H.: Arbitrarily slow convergence of sequences of linear operators: a survey, in Fixed-point algorithms for inverse problems in science and engineering, vol. 49, pp. 213–242. Appl. Springer, New York (2011)

    MATH  Google Scholar 

  20. Deutsch, F,. Hundal, H.: Arbitrarily slow convergence of sequences of linear operators, in Infinite products of operators and their applications, vol. 636, pp. 93–120. Contemp. Math. Amer. Math. Soc. Providence. RI (2015)

  21. Evron, I., Moroshko, E., Ward, R., Srebro, N., Soudry, D.: How catastrophic can catastrophic forgetting be in linear regression? Proceedings of the thirty-fifth conference on learning theory. 178, 728–4079 (2022)

    Google Scholar 

  22. Franchetti, C., Light, W.: On the von neumann alternating algorithm in Hilbert space. J. Math. Anal. Appl. 114, 305–314 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Galántai, A.: Projectors and projection methods, vol. 6. Kluwer Academic Publishers. Boston, MA (2004)

    Book  MATH  Google Scholar 

  24. Halperin, I.: The product of projection operators. Acta Sci. Math. Szeged. 23, 96–99 (1962)

    MathSciNet  MATH  Google Scholar 

  25. Kayalar, S., Weinert, H.L.: Error bounds for the method of alternating projections. Math. Control Signals Systems. 1, 43–59 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luna-Elizarrarás, M.E., Ramírez-Reyes, F., Shapiro, M.: Complexifications of real spaces general aspects. Georgian Math. J. 19, 259–282 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Von Neumann, J.: On rings of operators. Reduction theory. Ann of Math. 50(2), 401–485 (1949)

    MATH  Google Scholar 

  28. Pierra, G.: Decomposition through formalization in a product space. Math. Programming. 28, 96–115 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Popa, C. Projection algorithms: classical results and developments, applications to image reconstruction. Lambert Academic Publishing (2012)

  30. Reich, S., Zalas, R.: The optimal error bound for the method of simultaneous projections. J. Approx. Theory. 223, 96–107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reich, S,. Zalas, R. Error bounds for the method of simultaneous projections with infinitely many subspaces. J. Approx. Theory. 272, 24 pp., Paper No. 105648 (2021)

  32. Simon, B.: Real analysis: a comprehensive course in analysis, Part 1. American Mathematical Society. Providence. RI, With a 68 page companion booklet, (2015)

Download references

Acknowledgements

Both authors are grateful to two anonymous referees for their pertinent comments and helpful suggestions.

Funding

This work was partially supported by the Israel Science Foundation (Grants 389/12 and 820/17), the Fund for the Promotion of Research at the Technion and by the Technion General Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Zalas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section we sketch how to derive Theorems 1.4 and 1.5 in a real Hilbert space, having in mind that the corresponding results of [4] were established in a complex Hilbert space. We also present an alternative proof of Theorem 1.4 by using [16, Lemma 5.2]. For this purpose, we use a complexification argument. For more details concerning the complexification, we refer the reader to [26].

To this end, let \( \textbf{H}_{\mathbb C}:= \mathcal {H} + i\mathcal {H}\) be the (external) complexification of \(\mathcal H\) with scalar multiplication given by

$$\begin{aligned} (\alpha + i\beta )(x+iy) := \alpha x - \beta y +i (\alpha y + \beta x) \end{aligned}$$
(4.74)

and inner product \(\langle \cdot , \cdot \rangle _{\mathbb C}\) defined by

$$\begin{aligned} \langle x+iy, x'+iy'\rangle _{\mathbb C} := \langle x,x'\rangle + \langle y,y'\rangle + i(\langle x',y\rangle - \langle x,y'\rangle ), \end{aligned}$$
(4.75)

where \(\alpha ,\beta \in \mathbb R \) and \(x,y,x',y'\in \mathcal {H}\). Thus, the induced norm on \( \textbf{H}_{\mathbb C} \), denoted by \(\Vert \cdot \Vert _{\mathbb C}\), satisfies

$$\begin{aligned} \Vert x+iy\Vert _{\mathbb C}^2 = \Vert x\Vert ^2 + \Vert y\Vert ^2 \end{aligned}$$
(4.76)

for all \(x+iy\in \textbf{H}_{\mathbb C} \). It is not difficult to see that \(( \textbf{H}_{\mathbb C}, \langle \cdot , \cdot \rangle _{\mathbb C})\) is indeed a complex Hilbert space.

Proof of Theorem 1.4

For each \(j = 1, \ldots , m\), let \(\textbf{M}_j:= M_j + i M_j\). Observe that \(\textbf{M}_j \) is a closed linear subspace of \( \textbf{H}_{\mathbb C} \). Denote by \(P_{\textbf{M}_j }\) the orthogonal projection onto \(\textbf{M}_j \). Then, for each \( \textbf{z}= x+iy \in \textbf{H}_{\mathbb C} \), we have \( P_{\textbf{M}_j}(\textbf{z}) = P_{M_j}(x) + i P_{M_j}(y)\). This implies that the product \(\textbf{T}:= P_{\textbf{M}_m} \ldots P_{\textbf{M}_1} \) satisfies \( \textbf{T}( \textbf{z}) = T(x) +iT(y)\), where T is defined as in (1.2). Using induction, we get

$$\begin{aligned} \textbf{T}^k(\textbf{z}) = T^k(x) + i T^k(y). \end{aligned}$$
(4.77)

By [4, Remark 4.2(b) and Theorem 2.1], we have

$$\begin{aligned} k \Vert \textbf{T}^k(\textbf{z}) - \textbf{T}^{k-1}(\textbf{z}) \Vert _{\mathbb C} \rightarrow 0 \quad \text {as } k \rightarrow \infty \end{aligned}$$
(4.78)

for all \( \textbf{z}\in \textbf{H}_{\mathbb C} \). In particular, by taking \( \textbf{z}:= y_0 +i0\), we obtain

$$\begin{aligned} \Vert y_k - y_{k-1}\Vert = \Vert \textbf{T}^k(\textbf{z}) - \textbf{T}^{k-1}(\textbf{z}) \Vert _{\mathbb C}. \end{aligned}$$
(4.79)

This implies Theorem 1.4.\(\square \)

Alternative proof of Theorem 1.4

By [16, Lemma 5.2] applied to the operator \( \textbf{T}\), we have

$$\begin{aligned} \sum _{k=1}^{\infty } k \Vert \textbf{T}^k(\textbf{z}) - \textbf{T}^{k-1}(\textbf{z}) \Vert _{\mathbb C}^2 < \infty \end{aligned}$$
(4.80)

for all \( \textbf{z}\in \textbf{H}_{\mathbb C}\). In particular, by taking \( \textbf{z}:= y_0 +i0\), and knowing that the sequence \(\{\Vert y_k - y_{k-1}\Vert \}_{k=1}^\infty \) is decreasing, we have

$$\begin{aligned} \nonumber k^2 \Vert y_k - y_{k-1}\Vert ^2&\le 2 k \lceil k/2 \rceil \Vert y_k - y_{k-1}\Vert ^2 \le 4 \sum ^{k}_{n= \lfloor k/2\rfloor + 1} \frac{k}{2} \Vert y_n - y_{n-1}\Vert ^2 \\&\le 4 \sum ^{k}_{n= \lfloor k/2\rfloor + 1} n \Vert y_n - y_{n-1}\Vert ^2 = 4 \sum ^{{k}}_{n= \lfloor k/2\rfloor + 1} n \Vert \textbf{T}^n(\textbf{z}) - \textbf{T}^{n-1}(\textbf{z}) \Vert ^2_{\mathbb C} \rightarrow 0 \end{aligned}$$
(4.81)

as \(k \rightarrow \infty \). Thus we have shown that \(\Vert y_k-y_{k-1}\Vert = o(k^{-1})\) for all \(y_0\in \mathcal H\).\(\square \)

Proof of Theorem 1.5

It is not difficult to see that \(\textbf{M}_j^\perp = M_j^\perp + i M_j^\perp \) for all \(j = 1,\ldots ,m\); compare with (2.5). Consequently,

$$\begin{aligned} \textstyle \sum _{j=1}^{m}\textbf{M}_\textbf{j}^\perp = \sum _{j=1}^{m}M_j^\perp + i \sum _{j=1}^{m}M_j^\perp \end{aligned}$$
(4.82)

and thus

$$\begin{aligned} \textstyle \sum _{j=1}^{m} M_j^\perp \text { is (not) closed} \Longleftrightarrow \sum _{j=1}^{m}\textbf{M}_j^\perp \text { is (not) closed}. \end{aligned}$$
(4.83)

Consider now the subspaces of \(\textbf{H}_{\mathbb C}\) given by \(\textbf{X}_p:= \textbf{M}\oplus (\textbf{I}- \textbf{T})^p(\textbf{H}_{\mathbb C})\) and \(\textbf{X}:= \textstyle \bigcap _{p=1}^\infty \textbf{X}_p\), where \(\textbf{M}:= M+iM\) and \(\textbf{I}\) is the identity operator on \(\textbf{H}_{\mathbb C}\), \(p=1,2,\ldots \). Obviously, \(\textbf{X}_p\) and \(\textbf{X}\) are the analogues of \(X_p\) and X considered in Theorem 1.5. In fact, we have

$$\begin{aligned} \textbf{X}_p = X_p + i X_p \quad \text {and} \quad \textbf{X}= X + i X. \end{aligned}$$
(4.84)

Consequently, we obtain

$$\begin{aligned} X_p \ (X) \text { is dense in } \mathcal H \Longleftrightarrow \textbf{X}_p \ ( \textbf{X}) \text { is dense in } \textbf{H}_{\mathbb C}. \end{aligned}$$
(4.85)

By [4, Theorem 4.3], for each \(\textbf{z}\in \textbf{X}_p\), we get

$$\begin{aligned} \Vert \textbf{T}^k(\textbf{z}) - P_{\textbf{M}}(\textbf{z})\Vert = o(k^{-p}) \end{aligned}$$
(4.86)

where \(p = 1,2,\ldots \). Thus, for each \(y_0 \in X_p\) it suffices to take \(\textbf{z}:= y_0 +i0 \in \textbf{X}_p\), to see that

$$\begin{aligned} \Vert T^k(y_0) - P_M(y_0)\Vert = \Vert \textbf{T}^k(\textbf{z}) - P_{\textbf{M}}(\textbf{z})\Vert = o(k^{-p}), \end{aligned}$$
(4.87)

which shows (1.8). Similarly, for each \(y_0 \in X\), it suffices to take \(\textbf{z}:= y_0 +i0 \in \textbf{X}\) to see that (4.87) holds for all \(p > 0\). Moreover, by [4, Theorem 4.3], we know that \(\textbf{X}_p\) and \(\textbf{X}\) are dense in \(\textbf{H}_{\mathbb C}\).\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reich, S., Zalas, R. Polynomial estimates for the method of cyclic projections in Hilbert spaces. Numer Algor 94, 1217–1242 (2023). https://doi.org/10.1007/s11075-023-01533-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01533-w

Keywords

Mathematics Subject Classification (2010)

Navigation