Skip to main content
Log in

Integrable semi-discretizations and self-adaptive moving mesh method for a generalized sine-Gordon equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the present paper, two integrable and one non-integrable semi-discrete analogues of a generalized sine-Gordon (sG) equation are constructed. The keys of the construction are the Bäcklund transformation of bilinear equations and appropriate definition of the discrete hodograph transformation. We construct N-soliton solutions for the semi-discrete analogues of the generalized sG equation in the determinant form. In the continuous limit, we show that the semi-discrete generalized sG equations converge to the continuous generalized sG equation. Furthermore, we propose four self-adaptive moving mesh methods for the generalized sG equation, two are integrable and two are non-integrable. Integrable and non-integrable self-adaptive moving mesh methods are proposed and used for simulations of regular, irregular and loop soliton while comparing with the Crank-Nicolson (C-N) scheme. The numerical solutions show that the proposed self-adaptive moving methods perform better than the C-N scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of supporting data

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Fokas, A.S.: On a class of physically important integrable equations. Physica D. 87, 145–150 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lenells, L., Fokas, A.S.: On a novel integrable generalization of the sine-Gordon equation. J. Math. Phys. 51, 023519 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Matsuno, Y.: A direct method for solving the generalized sine-Gordon equation. J. Phys. A: Math. Theor. 43, 105204 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Matsuno, Y.: A direct method for solving the generalized sine-Gordon equation II. J. Phys. A: Math. Theor. 43, 375201 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hirota, R.: Nonlinear partial difference equations. III. Discrete sine-Gordon equation. J. Phys. Soc. Jpn. 43, 2079–2086 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Orfanidis, S.: Discrete sine-Gordon equations. Phys. Rev. D 15, 3822–3827 (1978)

    Article  MathSciNet  Google Scholar 

  7. Feng, B., Maruno, K., Ohta, Y.: Integrable discretizations of the short pulse equation. J. Phys. A Math. Theor. 43, 085203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Levi, D., Ragnisco, O. (eds.): SIDE II-Symmetries and Integrability of Difference Equations (CRM Proc and Lecture Notes vol 25). AMS, Montreal (1998)

  9. Grammaticos, B., Kosmann-Schwarzbach, Y., Tamizhmani, T. (eds.): Discrete Integrable Systems (Lecture Notes in Physics vol 644). Springer, Berlin (2004)

  10. Suris, Y.: The Problem of Integrable Discretization: Hamiltonian Approach (Progress in Mathematicsvol vol 219). Basel, Birkháuser (2003)

    Book  Google Scholar 

  11. Bobenko, A., Suris, Y.: Discrete Differential Geometry (Graduate Studies in Mathematics vol 98). AMS, RI (2008)

    Book  Google Scholar 

  12. Yu, G., Xu, Z.: Dynamics of a differential-difference integrable (2 + 1)-dimensional system. Phys. Rev E 91(06), 2015 (2902)

    MathSciNet  Google Scholar 

  13. Zhang, Y., Chang, X., Hu, J., Hu, X., Tam, H.: Integrable discretization of soliton equations via bilinear method and Bäcklund transformation. Science China Mathemtatics 58, 279 (2015)

    Article  MATH  Google Scholar 

  14. Dimakis, A., Muller-Hoissen, F.: Bidifferential calculus approach to AKNS hierarchies and their solutions. SIGMA 6, 055 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Matsuno, Y.: A novel multi-component generalization of the short pulse equation and its multisoliton solutions. J. Math. Phys. 52, 123702 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, B., Maruno, K., Ohta, Y.: Integrable semi-discretization of a multi-component short pulse equation. J. Math Phys. 56, 043502 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng, B., Maruno, K., Ohta, Y.: An integrable semi-discretization of the Camassa-Holm equation and its determinant solution. J. Phys. A Math. Theor. 41, 355205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hirota, R.: The Direct Methods in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  19. Feng, B.: An integrable coupled short pulse equation. J. Phys. A: Math. Theor. 45, 085202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, B.: (Etc.). Integrable discretizations and self-adaptive moving mesh method for a coupled short pulse equation. J. Phys. A: Math. Theor. 48, 385202 (2015)

    Article  MATH  Google Scholar 

Download references

Funding

G. Yu’s work is supported by the National Natural Science Foundation of China, Grant Nos.11871336, 12175155, and Shanghai Frontier Research Institute for Modern Analysis, PR China. B. Feng’s work is partially supported the National Science Foundation (NSF), Grant No. DMS-1715991; U.S. Air Force for Scientific Research (AFOSR), Grant No. W911NF2010276.

Author information

Authors and Affiliations

Authors

Contributions

B. Feng proposed the original idea and made the review of the manuscript. H. Sheng contributed the numerical simulation. G.Yu conducted the simulation, visualization and wrote the manuscript draft. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Guo-Fu Yu.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Human and animal ethics

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we present the proof of Proposition 3. From the definition of ϕk,uk and equations (3.18)–(3.19), we have

$$ \begin{array}{@{}rcl@{}} \frac{d\phi_{k}}{d\tau }& =&\mathrm{i}\left( \ln \frac{\bar{f}_{k}g_{k}}{f_{k} \bar{g}_{k}}\right)_{\tau } =\mathrm{i}\left( \ln \frac{\bar{f}_{k}}{\bar{g}_{k}}\right)_{\tau } -\mathrm{i}\left( \ln \frac{f_{k}}{g_{k}}\right)_{\tau }\\ & =&\frac{\mathrm{i}}{2}\left( \frac{\bar{f}_{k}\bar{g}_{k}}{f_{k}g_{k}}-\frac{ f_{k}g_{k}}{\bar{f}_{k}\bar{g}_{k}}\right) =\frac{\mathrm{i}}{2}\left( e^{-\mathrm{i}u_{k}}-e^{\mathrm{i}u_{k}}\right)\\ & =&\sin u_{k}. \end{array} $$
(A.1)

Therefore

$$ \begin{array}{@{}rcl@{}} \sin u_{k+1}-\sin u_{k} & =&\frac{d}{d\tau} (\phi_{k+1}-\phi_{k}) \\ &=&a \Big(\sin\Big(\frac{ \sigma_{k+1}+\sigma_{k}}{2}\Big) - \sin\Big(\frac{\sigma^{\prime}_{k+1}+\sigma^{\prime }_{k}}{2}\Big) \Big) \\ &=&2a\cos \Big(\frac{u_{k+1}+u_{k}}{2}\Big) \sin \Big(\frac{\phi_{k+1}+\phi_{k}}{2}\Big), \end{array} $$
(A.2)

which results in

$$ \begin{array}{@{}rcl@{}} \!\!\!\!\!\!\!\!2 \cos \Big(\frac{u_{k+1} + u_{k}}{2}\Big) \sin \Big(\frac{u_{k+1} - u_{k}}{2}\Big) = 2a\cos \Big(\frac{u_{k+1} + u_{k}}{2}\Big) \sin \Big(\frac{\phi_{k+1} + \phi_{k}}{2}\Big)?? \end{array} $$
(A.3)

i.e.,

$$ a\sin \Big(\frac{\phi_{k+1}+\phi_{k}}{2}\Big)=\sin \Big(\frac{u_{k+1}-u_{k}}{2}\Big). $$
(A.4)

Thus, we complete the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, BF., Sheng, HH. & Yu, GF. Integrable semi-discretizations and self-adaptive moving mesh method for a generalized sine-Gordon equation. Numer Algor 94, 351–370 (2023). https://doi.org/10.1007/s11075-023-01504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01504-1

Keywords

Mathematics Subject Classification (2010)

Navigation