Skip to main content
Log in

Exact subdomain and embedded interface polynomial integration in finite elements with planar cuts

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The implementation of discontinuous functions occurs in many of today’s state-of-the-art partial differential equation solvers. However, in finite element methods, this poses an inherent difficulty: efficient quadrature rules available when integrating functions whose discontinuity falls in the element’s interior are for low order degree polynomials, not easily extended to higher order degree polynomials, and cover a restricted set of geometries. Many approaches to this issue have been developed in recent years. Among them, one of the most elegant and versatile is the equivalent polynomial technique. This method replaces the discontinuous function with a polynomial, allowing integration to occur over the entire domain rather than integrating over complex subdomains. Although eliminating the issues involved with discontinuous function integration, the equivalent polynomial tactic introduces its problems. The exact subdomain integration requires a machinery that quickly grows in complexity when increasing the polynomial degree and the geometry dimension, restricting its applicability to lower order degree finite element families. The current work eliminates this issue. We provide algebraic expressions to exactly evaluate the subdomain integral of any degree polynomial on parent finite element shapes cut by a planar interface. These formulas also apply to the exact evaluation of the embedded interface integral. We provide recursive algorithms that avoid overflow in computer arithmetic for standard finite element geometries: triangle, square, cube, tetrahedron, and prism, along with a hypercube of arbitrary dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
Algorithm 8
Algorithm 9

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated during the current study.

References

  1. Aragón, A. M., Duarte, C.A., Geubelle, P.H.: Generalized finite element enrichment functions for discontinuous gradient fields. Int. J. Numer. Meth. Eng. 82(2), 242–268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 46(1), 131–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aulisa, E., Capodaglio, G., Chierici, A., D’Elia, M.: Efficient quadrature rules for finite element discretizations of nonlocal equations. Numerical Methods for Partial Differential Equations. https://doi.org/10.1002/num.22833 (2021)

  4. D’Elia, M., Du, Q., Glusa, C., Tian, X., Zhou, Z.: Numerical methods for nonlocal and fractional models. ACTA Numerica 29 (2020)

  5. Friswell, M.I., Adhikari, S., Lei, Y.: Non-local finite element analysis of damped beams. Int. J. Solids Struct. 44(22-23), 7564–7576 (2007)

    Article  MATH  Google Scholar 

  6. Aulisa, E., Manservisi, S., Scardovelli, R., Zaleski, S.: Interface reconstruction with least-squares fit and split advection in three-dimensional cartesian geometry. J. Comput. Phys. 225(2), 2301–2319 (2007). https://doi.org/10.1016/j.jcp.2007.03.015

    Article  MathSciNet  MATH  Google Scholar 

  7. Aulisa, E., Manservisi, S., Scardovelli, R.: A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows. J. Comput. Phys. 188(2), 611–639 (2003)

    Article  MATH  Google Scholar 

  8. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  9. Joulaian, M., Hubrich, S., Düster, A.: Numerical integration of discontinuities on arbitrary domains based on moment fitting. Comput. Mech. 57(6), 979–999 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ventura, G.: On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int. J. Numer. Meth. Eng. 66 (5), 761–795 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mousavi, S.E., Sukumar, N.: Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput. Mech. 47(5), 535–554 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holdych, D.J., Noble, D.R., Secor, R.B.: Quadrature rules for triangular and tetrahedral elements with generalized functions. Int. J. Numer. Meth. Eng. 73(9), 1310–1327 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Abedian, A., Düster, A.: Equivalent legendre polynomials: numerical integration of discontinuous functions in the finite element methods. Comput. Methods Appl. Mech. Eng. 343, 690–720 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Abedian, A., Parvizian, J., Düster, A., Khademyzadeh, H., Rank, E.: Performance of different integration schemes in facing discontinuities in the finite cell method. Int. J. Comput. Methods 10(03), 1350002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ventura, G., Benvenuti, E.: Equivalent polynomials for quadrature in Heaviside function enriched elements. Int. J. Numer. Meth. Eng. 102(3-4), 688–710 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gasca, M., Sauer, T.: Polynomial interpolation in several variables. Adv. Comput. Math. 12(4), 377–410 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma, J., Rokhlin, V., Wandzura, S.: Generalized gaussian quadrature rules for systems of arbitrary functions. SIAM J. Numer. Anal. 33(3), 971–996 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Neidinger, R.D.: Multivariate polynomial interpolation in newton forms. SIAM Rev. 61(2), 361–381 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kees, C.E., Collins, J.H., Zhang, A.: Simple, accurate, and efficient embedded finite element methods for fluid–solid interaction. Comput. Methods Appl. Mech. Eng. 389, 114404 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Loftin, J.: Exact cutfem polynomial integration PhD thesis (2022)

  21. Aulisa, E, Bná, S, Bornia, G: FEMuS. https://github.com/eaulisa/MyFEMuS (2014)

  22. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B., Zhang, H.: PETSC users manual revision 3.3. Computer Science Division, Argonne National Laboratory, Argonne IL (2012)

  23. Dingle, R.: The Fermi-Dirac integrals. Applied Scientific Research Section B 6(1), 225–239 (1957)

    Article  MATH  Google Scholar 

  24. Truesdell, C.: On a function which occurs in the theory of the structure of polymers. Ann. Math. 144–157 (1945)

  25. Rhodes, P.: Fermi-dirac functions of integral order. Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences 204(1078), 396–405 (1950)

    MathSciNet  MATH  Google Scholar 

  26. Lax, P.D.: Functional Analysis. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, New York (2014)

  27. Onural, L.: Impulse functions over curves and surfaces and their applications to diffraction. J. Math. Anal. Appl. 322(1), 18–27 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, X.: Lecture Notes in Real Analysis. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  29. Saad, Y.: On the condition number of some Gram matrices arising from least squares approximation in the complex plane. Numer. Math. 48(3), 337–347 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, Y.: On multivariate orthogonal polynomials. SIAM J. Math. Anal. 24(3), 783–794 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of the National Science Foundation (NSF) Division of Mathematical Sciences (DMS) program, project 1912902.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Aulisa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jonathon Loftin contributed equally to this work.

Appendix

Appendix

Proposition 6

Let D be a bounded connected domain with smooth boundary D. Let G(x) be a smooth level set function. Let \({\Gamma } = \left \{ \boldsymbol {x}\in D : G(\boldsymbol {x}) = 0 \right \}\) be a continuous smooth embedded interface, that separates D in the two subregions D1 and D2, such that G(x) > 0 for all xD1 and G(x) < 0 for all xD2. Assume the measure μ(Γ ∩ D) = 0. Then, for any differentiable function f(x)

$$ \begin{array}{@{}rcl@{}} -\lim_{t\rightarrow\infty}t& {\int}_{D} f { \text{Li}}_{-1}(-\exp(G t)) \| \nabla G \| d\boldsymbol{x} = {\int}_{D} f \delta(G) \|\nabla(G)\| d\boldsymbol{x}. \end{array} $$

The ∥∇G∥ term in both sides is needed since the level set G(x) only approximates the required condition, ∥∇d∥ = 1, for a true distance d(x), see Appendix in [12].

Proof

Let n on D be the outer unit normal vector to D. Let \(\widehat {\boldsymbol {n}} =-\frac {\nabla G}{\| \nabla G \|}\) be defined everywhere on D. \(\widehat {\boldsymbol {n}}\) is the unit vector orthogonal to the the level curves G(x) = const, pointing in the direction of maximum decrease. On the interface Γ, \(\widehat {\boldsymbol {n}}\) is the unit outer normal to D1. Let D1 = DD1. Then, the boundary of D1 is piece-wise-defined by D1 ∪Γ, with outer unit normal vectors n and \(\widehat {\boldsymbol {n}}\), respectively.

Observe that by using the chain rule and the derivative property of the polylogarithm, we have

$$ \begin{array}{@{}rcl@{}} &\nabla&{ \text{Li}}_{0}(-\exp(G t)) \cdot \widehat{\boldsymbol{n}} = \nabla{ \text{Li}}_{0}(-\exp(G t)) \cdot \left( -\frac{\nabla G}{\| \nabla G \|} \right) \\ &=& -t \frac{d}{d G} { \text{Li}}_{0}(-\exp(G t)) \nabla G \cdot\frac{\nabla G}{\| \nabla G \|} = -t { \text{Li}}_{-1}(-\exp(G t)) \| \nabla G \|. \end{array} $$
(A.1)

Then,

$$ \begin{array}{@{}rcl@{}} &-&\lim_{t\rightarrow\infty}t {\int}_{D} f { \text{Li}}_{-1}(-\exp(G t)) \| \nabla G \| d\boldsymbol{x} = \lim_{t\rightarrow\infty}{\int}_{D} \nabla{ \text{Li}}_{0}(-\exp(G t)) \!\cdot\! \left( f \widehat{\boldsymbol{n}}\right) d\boldsymbol{x} \\&=& -\lim_{t\rightarrow\infty}\left( {\int}_{D} { \text{Li}}_{0}(-\exp(G t)) \nabla \cdot \left( f \widehat{\boldsymbol{n}} \right) d\boldsymbol{x} + {\int}_{\partial D} { \text{Li}}_{0}(-\exp(G t)) f \widehat{\boldsymbol{n}} \cdot \boldsymbol{n} dS \right) \\& =& {\int}_{D} {\mathrm{U}}(G) \nabla \cdot \left( f \widehat{\boldsymbol{n}}\right) d\boldsymbol{x} - {\int}_{\partial D} {\mathrm{U}}(G) f \widehat{\boldsymbol{n}}\cdot \boldsymbol{n} dS \\& =& {\int}_{D_{1}} \nabla \cdot \left( f \widehat{\boldsymbol{n}}\right) d\boldsymbol{x} - {\int}_{\partial D_{1}} f \widehat{\boldsymbol{n}} \cdot \boldsymbol{n} dS \\ &=& \left( {\int}_{\partial D_{1}} f \widehat{\boldsymbol{n}}\cdot \boldsymbol{n} d S + {\int}_{\Gamma} f \widehat{\boldsymbol{n}}\cdot \widehat{\boldsymbol{n}} d S \right) - {\int}_{\partial D_{1}} f \widehat{\boldsymbol{n}} \cdot \boldsymbol{n} dS \\&=& {\int}_{\Gamma} f dS = {\int}_{D} f \delta(G) \|\nabla G\| d\boldsymbol{x}, \end{array} $$

Where we used (A.1) for first line equality, divergence Theorem for the second line equality, (2) for the third equality, (3) for the fourth equality, divergence Theorem for the fifth line equality, and the definition of the Dirac delta distribution for a level set in the last line equality. Note that the proof holds only if the measure μ(Γ ∩ D) = 0, for an appropriate product measure μ, since from the third line to the fourth line, the integral equality on the boundary

$${\int}_{\partial D} {\mathrm{U}}(G) f \widehat{\boldsymbol{n}}\cdot \boldsymbol{n} dS = {\int}_{\partial D_{1}} f \widehat{\boldsymbol{n}} \cdot \boldsymbol{n} dS $$

is true only if the Heaviside function U is almost everywhere 1 on D1 and almost everywhere 0 on its complement. For μ(Γ ∩ D)≠ 0, we would have measurable parts of the boundary D with U = 0.5, and the equality would not hold. □

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aulisa, E., Loftin, J. Exact subdomain and embedded interface polynomial integration in finite elements with planar cuts. Numer Algor 94, 315–350 (2023). https://doi.org/10.1007/s11075-023-01502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01502-3

Keywords

Navigation