Skip to main content
Log in

High order multiquadric trigonometric quasi-interpolation method for solving time-dependent partial differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose a high order multiquadric trigonometric quasi-interpolation method for function approximation and derivative approximation based on periodic sampling data. Moreover, we apply it to solve time-dependent nonlinear partial differential equations (PDEs) with periodic solutions. Learning from the construction of the trigonometric B-spline quasi-interpolation, we derive the new quasi-interpolation scheme by replacing the truncated trigonometric polynomial with a high degree, infinitely smooth multiquadric trigonometric kernel. By appropriately choosing the shape parameter in the kernel, we prove that the proposed method achieves higher order of convergence than the existing multiquadric trigonometric quasi-interpolation method. Finally, we conduct extensive numerical experiments to demonstrate the accuracy and efficiency of the proposed method for approximating unknown function and solving different types of PDEs including the one-dimensional KdV equation and two-dimensional Allen-Cahn equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets and algorithms generated during the current study are available from the corresponding author on reasonable request.

References

  1. Beatson, R. K., Powell, M. J. D.: Univariate multiquadric approximation: quasi-interpolation to scattered data. Constr. Approx. 8(3), 275–288 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein, S.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités (proof of the theorem of weierstrass based on the calculus of probabilities). Comm. Kharkov Math. Soc. 13, 1–2 (1912)

    Google Scholar 

  3. Buhmann, M. D.: Convergence of univariate quasi-interpolation using multiquadrics. IMA J. Numer. Anal. 8(3), 365–383 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buhmann, M.D.: Radial basis functions: theory and implementations, vol. 12, Cambridge University Press (2003)

  5. Chen, R. H., Wu, Z.M.: Applying multiquadric quasi-interpolation to solve Burgers’ equation. Appl. Math. Comput. 172(1), 472–484 (2006)

    MathSciNet  MATH  Google Scholar 

  6. De Boor, C., Höllig, K., Riemenschneider, S.: Box Splines. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  7. Duan, Y., Rong, F.: A numerical scheme for nonlinear Schrödinger equation by MQ quasi-interpolation. Eng. Anal. Bound Elem. 37(1), 89–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fabien, M. S.: Numerical error analysis for an energy-stable HDG method for the Allen–Cahn equation. J. Comput. Appl. Comput. 402, 113800 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fasshauer, G.E.: Meshfree approximation methods with MATLAB, vol. 6, World Scientific (2007)

  10. Gao, Q. J., Wu, Z. M., Zhang, S.G.: Applying multiquadric quasi-interpolation for boundary detection. Comput. Math Appl. 62(12), 4356–4361 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, W. W., Sun, X. P., Wu, Z. M., Zhou, X.: Multivariate Monte Carlo approximation based on scattered data. SIAM J. Sci Comput. 42(4), A2262–A2280 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, W. W., Sun, Z.J.: High-order numerical solution of time-dependent differential equations with quasi-interpolation. Appl. Numer Math. 146, 276–290 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, W. W., Wu, Z.M.: A quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splines. J. Comput. Appl Math. 271, 20–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, W. W., Wu, Z. M.: Approximation orders and shape preserving properties of the multiquadric trigonometric B-spline quasi-interpolant. Comput. Math Appl. 69(7), 696–707 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong, Q., Gong, Y. Z., Zhao, J., Wang, Q.: Arbitrarily high order structure-preserving algorithms for the Allen-Cahn model with a nonlocal constraint. Appl. Numer Math. 170, 321–339 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jeong, B., Kersey, S.N., Yoon, J.: Approximation of multivariate functions on sparse grids by kernel-based quasi-interpolation. SIAM J. Sci Comput. 43(2), A953–A979 (2021)

    Article  MathSciNet  Google Scholar 

  17. Jerri, A. J.: The Shannon sampling theorem—its various extensions and applications: a tutorial review. Proc. IEEE 65(11), 1565–1596 (1977)

    Article  MATH  Google Scholar 

  18. Jiang, Z. W., Wang, R.H.: Numerical solution of one-dimensional Sine-Gordon equation using high accuracy multiquadric quasi-interpolation. Appl. Math Comput. 218(15), 7711–7716 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Lamnii, A., Nour, M.Y., Sbibih, D., Zidna, A.: Generalized spline quasi-interpolants and applications to numerical analysis. J. Comput. Appl. Math. 114100, 408 (2022)

    MathSciNet  MATH  Google Scholar 

  20. Li, Y. B., Lee, H. G., Jeong, D., Kim, J.: An unconditionally stable hybrid numerical method for solving the Allen–Cahn equation. Comput. Math Appl. 60, 1591–1606 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lyche, T., Schumaker, L. L., Stanley, S.: Quasi-interpolants based on trigonometric splines. J. Approx. Theory 95(2), 280–309 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lyche, T., Winther, R.: A stable recurrence relation for trigonometric B-splines. J Approx. Theory 25(3), 266–279 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma, L. M., Wu, Z.M.: Approximation to the k-th derivatives by multiquadric quasi-interpolation method. J. Comput. Appl Math. 231(2), 925–932 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, L. M., Wu, Z.M.: Stability of multiquadric quasi-interpolation to approximate high order derivatives. Sci China Math. 53(4), 985–992 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sablonnière, P.: Univariate spline quasi-interpolants and applications to numerical analysis. Rend. Sem. Mat. Univ. Pol. Torino 63, 211–222 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Schumaker, L.L., Traas, C.: Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines. Numer. Math. 60(1), 133–144 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, Z. J.: A conservative scheme for two-dimensional Schrödinger equation based on multiquadric trigonometric quasi-interpolation approach. Appl. Math. Comput. 126996, 423 (2022)

    Google Scholar 

  28. Sun, Z.J., Gao, W.W.: A meshless scheme for Hamiltonian partial differential equations with conservation properties. Appl. Numer Math. 119, 115–125 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, Z. J., Wu, Z. M., Gao, W.W.: An iterated quasi-interpolation approach for derivative approximation. Numer Algorithms 85(1), 255–276 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wendland, H.: Scattered Data Approximation, vol. 17, Cambridge University Press (2004)

  31. Wu, R. F., Wu, T. R., Li, H.L.: A family of multivariate multiquadric quasi-interpolation operators with higher degree polynomial reproduction. J. Comput. Appl Math. 274, 88–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, Z. M., Schaback, R.: Shape preserving properties and convergence of univariate multiquadric quasi-interpolation. Acta Math. Appl. Sin. 10, 441–446 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, Z. M., Zhang, R.: Data-driven modeling for the motion of a sphere falling through a non-Newtonian fluid. Commun. Math Sci. 16(2), 425–439 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, Z. M., Zhang, R.: Learning physics by data for the motion of a sphere falling in a non-Newtonian fluid. Commun. Non. Sci. Numer Simul. 67, 577–593 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, Z. M., Zhang, S.L.: Conservative multiquadric quasi-interpolation method for Hamiltonian wave equations. Eng. Anal. Bound Elem. 37(7-8), 1052–1058 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, W.X., Wu, Z.M.: Shape-preserving MQ-B-splines quasi-interpolation. In: Geometric modeling and processing, 2004. Proceedings, pp. 85–92. IEEE (2004)

Download references

Acknowledgements

The authors wish to thank the reviewers for their suggestions and for carefully reading the manuscript.

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 12101310), National Natural Science Foundation of China Key Project (Grant No. 11631015), Natural Science Foundation of Jiangsu Province (Grant No. BK20210315), and 2021 Jiangsu Shuangchuang Talent Program (JSSCBS 20210222).

Author information

Authors and Affiliations

Authors

Contributions

Zhengjie Sun: theoretical analysis, writing, review. Yuyan Gao: coding, methodology, validation, review. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yuyan Gao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A. The expression of coefficients α i,j

Appendix: A. The expression of coefficients α i,j

For convenience, we present the formula to compute the coefficients αi,j appeared in (2.4) which was given in [21]. Let 1 ≤ lk and

$$t_{i}\leq \tau_{i,1}<\tau_{i,2}<\cdots<\tau_{i,l}\leq t_{i+k}$$

lie in the support [ti,ti+k] of the B-spline \({T_{i}^{k}}\) for 1 ≤ in. Then for each 1 ≤ jl, let

$$ \alpha_{i,j}=\frac{\sum\limits_{\mathbf{\iota}=1}^{k-1}~_{k-1}\prod\limits_{v=1}^{l-1}\sin(\frac{t_{i+i_{v}}-\theta_{v}}{2})\prod\limits_{v=1}^{(k-l)/2}\cos(\frac{t_{i+i_{l+2v-1}}-t_{i+i_{l+2v-2}}}{2})}{(k-1)!\prod\limits_{v=1,v\neq j}^{l} \sin(\frac{\tau_{i,v}-\tau_{i,j}}{2})}, $$
(6.1)

where {𝜃1,…,𝜃l− 1} := {τi,1,…,τi,j− 1,τi,j+ 1,…,τi,l}. The first sum in the numerator is defined for multiple sums (eq.(5.7), [21]. Suppose \(A_{\iota }:=A_{i_{1},\ldots ,i_{m}}\) are real numbers defined for 1 ≤ i1,…,imk. Then

$$ \sum\limits_{\iota=1}^{k}~_{m}A_{\iota}:=\sum\limits_{i_{1}=1}^{k}\sum\limits_{\underset{i_{2}\neq i_{1}}{i_{2}=1}}^{k}\cdots\sum\limits_{\underset{i_{m}\neq i_{1},i_{2},\ldots,i_{m-1}}{i_{m}=1}}^{k}A_{i_{1},i_{2},\ldots,i_{m}}, $$

where ι stands for the multi-index (i1,…,im).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Gao, Y. High order multiquadric trigonometric quasi-interpolation method for solving time-dependent partial differential equations. Numer Algor 93, 1719–1739 (2023). https://doi.org/10.1007/s11075-022-01486-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01486-6

Keywords

Navigation