Skip to main content
Log in

DCACO: an algorithm for designing incoherent redundant matrices

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The mutual coherence of a matrix, defined as the maximum absolute value of the normalized inner-products between different columns, is an important property that characterizes the similarity between different matrix columns. Redundant matrices with very low mutual coherence are referred to as incoherent redundant matrices which play an important role in mathematical signal processing tasks. The problem of minimizing the mutual coherence in a give matrix space where each matrix has normalized columns is called the coherence optimization problem. In this paper, we transform equivalently the coherence optimization problem as a rank constrained semidefinite \(\ell _{\infty }\)-minimization problem. It is critical to analyze the projection operator onto the nonconvex set in the new matrix optimization constraints, i.e., the nonconvex set of symmetric positive semidefinite matrices whose rank is not greater than a give positive integer. By exploiting the projection operator, we express the nonconvex set mentioned above as the set of zero roots of a Difference of two Convex (DC) functions. For the convex function related to the projection operator in the DC function, we characterize its properties and obtain the concise form of its subdifferential. With the help of the DC function, a new algorithm based on DCA (DC Algorithms) is proposed to solve the Coherence Optimization problem, and thus the proposed algorithm is called DCACO for short. We also study the convergence analysis of DCACO. An advantage of DCACO is that subproblems in each iteration have closed-form solutions. Experimental results demonstrate that DCACO leads to state-of-art performance on generating highly incoherent redundant matrices, and DCACO can also compete with several other algorithms on designing optimized projection matrices for improving the performance of compressed sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Strohmer, T., Heath, Jr.R.W.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zörlein, H., Bossert, M.: Coherence optimization and best complex antipodal spherical codes. IEEE Trans. Signal Process. 63(24), 6606–6615 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Goyal, V. K., Kovačević, J., Kelner, J. A.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10(3), 203–233 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tropp, J. A.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, New York (2010)

    Book  MATH  Google Scholar 

  6. Foucart, S., Rauhut, H.: A mathematical introduction to compressive sensing birkhäuser Basel (2013)

  7. Eldar, Y. C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge Univ. Press, Cambridge (2012)

    Book  Google Scholar 

  8. Elad, M.: Optimized projections for compressed sensing. IEEE Trans. Signal Process. 55(12), 5695–5702 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Xu, J., Pi, Y., Cao, Z.: Optimized projection matrix for compressive sensing. EURASIP J. Adv. Signal Process. 2010(1), 560349 (2010)

    Article  Google Scholar 

  10. Abolghasemi, V., Ferdowsi, S., Sanei, S.: A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing. Signal Process. 92, 999–1009 (2012)

    Article  Google Scholar 

  11. Tsiligianni, E. V., Kondi, L. P., Katsaggelos, A. K.: Construction of incoherent unit norm tight frames with application to compressed sensing. IEEE Trans. Inf. Theory 60(4), 2319–2330 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rusu, C., González-Prelcic, N.: Designing incoherent frames through convex techniques for optimized compressed sensing. IEEE Trans. Signal Process. 64(9), 2334–2344 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lu, C., Li, H., Lin, Z.: Optimized projections for compressed sensing via direct mutual coherence minimization. Signal Process. 151, 45–55 (2018)

    Article  Google Scholar 

  14. Casazza, P. G., Kutyniok, G.: Finite frames: theory and applications birkhäuser Basel (2013)

  15. Bajwa, W. U., Calderbank, R., Mixon, D. G.: Two are better than one: fundamental parameters of frame coherence. Appl. Comput. Harmon. Anal. 33(1), 58–78 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Waldron, S. F. D.: An introduction to finite tight frames birkhäuser Basel (2018)

  17. Chen, X., Hardin, D. P., Saff, E. B.: On the search for tight frames of low coherence. J. Fourier Anal. Appl. 27(1), 1–27 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Welch, L. R: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inf. Theory 20(3), 397–399 (1974)

    Article  MATH  Google Scholar 

  19. Xia, P., Zhou, S., Giannakis, G. B.: Achieving the Welch bound with difference sets. IEEE Trans. Inf. Theory 51(5), 1900–1907 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sustik, M. A., Tropp, J. A., Dhillon, I. S., Heath, JrR. W.: On the existence of equiangular tight frames. Linear Algebra Appl. 426, 619–635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Renes, J. M.: Equiangular tight frames from paley tournaments. Linear Algebra Appl. 426, 497–501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Waldron, S. F. D.: On the construction of equiangular frames from graphs. Linear Algebra Appl. 431(11), 2228–2242 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fickus, M., Mixon, D. G., Tremain, J. C.: Steiner equiangular tight frames. Linear Algebra Appl. 436(5), 1014–1027 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jasper, J., Mixon, D. G., Fickus, M.: Kirkman equiangular tight frames and codes. IEEE Trans. Inf. Theory 60(1), 170–181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rusu, C., González-Prelcic, N., Heath, JrR. W.: Properties of real and complex ETFs and their application to the design of low coherence frames. Linear Algebra Appl. 508, 81–90 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fickus, M., Mixon, D. G.: Tables of the existence of equiangular tight frames. https://arxiv.org/abs/1504.00253 (2016)

  27. Tropp, J. A., Dhillon, I. S., Heath, R. W., Strohmer, T.: Designing structured tight frames via an alternating projection method. IEEE Trans. Inf. Theory 51(1), 188–209 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thill, M., Hassibi, B.: Low-coherence frames from group fourier matrices. https://arxiv.org/abs/1509.05739 (2015)

  29. Rusu, C.: Design of incoherent frames via convex optimization. IEEE Signal Process. Lett. 20(7), 673–676 (2013)

    Article  Google Scholar 

  30. Sadeghi, M., Babaie-Zadeh, M.: Incoherent unit-norm frame design via an alternating minimization penalty method. IEEE Signal Process. Lett. 24(1), 32–36 (2017)

    Article  Google Scholar 

  31. Dumitrescu, B.: Designing incoherent frames with only matrix-vector multiplications. IEEE Signal Process. Lett. 24(9), 1265–1269 (2017)

    Article  Google Scholar 

  32. Theobald, C. M.: An inequality for the trace of the product of two symmetric matrices. Math. Proc. Cambridge Philos. Soc. 77(2), 265–267 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bauschke, H. H., Combettes, P. L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, New York (2017)

    Book  MATH  Google Scholar 

  34. Thi, H. A. L., Dinh, T. P.: DC programming and DCA: thirty years of developments. Math. Program. 169(1), 5–68 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the 1-ball for learning in high dimensions. Proc. 25th ICML:272–279 (2008)

  36. Grant, M., Boyd, S.: CVX: matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx (2013)

  37. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. Recent advances in learning and control (a tribute to M. Vidyasagar). In: Blondel, V., Boyd, S., Kimura, H. (eds.) Lecture Notes in Control and Information Sciences, pp. 95–110. Springer. http://stanford.edu/boyd/graph_dcp.html (2008)

  38. Chamboulle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor-in chief and the anonymous reviewers for their valuable comments and suggestions, which help us very much in improving the original version of this paper. The authors would like to thank Professor Bogdan Dumitrescu for providing the source code of ISPM in [31]. The authors also would like to thank Chongyang Wang for improving numerical experiments.

Funding

This research was supported by the National Natural Science Foundation of China under the Grant nos. 61901404, 12031003 and 11771347, and supported by the Nanhu Scholars Program for Young Scholars of XYNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchao Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Data availability

All data and code generated or used during the study are available at https://github.com/sparseelad/DCACO.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Peng, J. DCACO: an algorithm for designing incoherent redundant matrices. Numer Algor 93, 785–813 (2023). https://doi.org/10.1007/s11075-022-01441-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01441-5

Keywords

Navigation