Skip to main content
Log in

Strong convergence of Bregman projection method for solving variational inequality problems in reflexive Banach spaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper aims to introduce a new projection method for solving pseudomonotone variational inequality problems in real reflexive Banach spaces. The main algorithm is based on the self-adaptive method, subgradient extragradient method and Bregman projection method. Under some appropriate assumptions imposed on the parameters, we prove a strong convergence theorem of the proposed algorithm. Finally, several numerical examples are given to show that our method has better convergence performance than the known results in the literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. Theory and applications of nonlinear operators of accretive and monotone type, 15–50, Lecture Notes in Pure and Appl Math., vol. 178. Dekker, New York (1996)

    Google Scholar 

  2. Alves, M.M., Marcavillaca, R.T.: On inexact relative-error hybrid proximal extragradient, forward-backward and Tseng’s modified forward-backward methods with inertial effects. Set-Valued Var. Anal. 28, 301–325 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aussel, D., Cao Van, K., Salas, D.: Quasi-variational inequality problems over product sets with quasi-monotone operators. SIAM J. Optim. 29, 1558–1577 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Batista, E.E.A., Bento, G.C., Ferreira, O.P.: An extragradient-type algorithm for variational inequality on Hadamard manifolds. ESAIM Control Optim. Calc. Var. 26, 16 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Butnariu, D., Iusem, A.N.: Totally convex functions for fixed points computation and infinite dimensional optimization. Applied Optimization, vol. 40. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  6. Cai, G., Gibali, A., Iyiola, O.S., Shehu, Y.: A new double-projection method for solving variational inequalities in Banach spaces. J. Optim. Theory Appl. 178, 219–239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J Optim Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, J., Liu, S., Chang, X.: Modified Tseng’s extragradient methods for variational inequality on Hadamard manifolds. Appl. Anal. 100, 2627–2640 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gibali, A., Thong, D.V., Tuan, P.A.: Two simple projection-type methods for solving variational inequalities. Anal. Math. Phys. 9, 2203–2225 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hieu, D.V., Cho, Y.J., Xiao, Y., Kumam, P.: Relaxed extragradient algorithm for solving pseudomonotone variational inequalities in Hilbert spaces. Optimization 69, 2279–2304 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jolaoso, L.O., Shehu, Y.: Single Bregman projection method for solving variational inequalities in reflexive Banach spaces. Appl. Anal., 1–22 (2021)

  13. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomikai Matematicheskie Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  14. Kaushik, H.D., Yousefian, F.: A method with convergence rates for optimization problems with variational inequality constraints. SIAM J. Optim. 31, 2171–2198 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, L.J., Yang, M.F., Ansari, Q.H., Kassay, G.: Existence results for Stampacchia and Minty type implicit variational inequalities with multivalued maps. Nonlinear Anal. 61, 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martín-Márquez, V., Reich, S., Sabach, S.: Bregman strongly nonexpansive operators in reflexive Banach spaces. J. Math. Anal. Appl. 400, 597–614 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mashreghi, J., Nasri, M.: Forcing strong convergence of Korpelevich’s method in Banach spaces with its applications in game theory. Nonlinear Anal. 72, 2086–2099 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Naraghirad, E., Yao, J.C.: Bregman weak relatively nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 141, 43 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Phelps, R.R.: Convex functions, monotone operators and differentiability. Lecture Notes in Mathematics, 2nd edn., vol. 1364. Springer-Verlag, Berlin (1993)

  21. Reich, S., Sabach, S.: A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal. 10, 471–485 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Shehu, Y.: Single projection algorithm for variational inequalities in Banach spaces with application to contact problem. Acta Math. Sci. Ser. B 40, 1045–1063 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shehu, Y., Dong, Q.L., Jiang, D.: Single projection method for pseudo-monotone variational inequality in Hilbert spaces. Optimization 68, 385–409 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sahu, D.R., Singh, A.K.: Inertial normal S-type Tseng’s extragradient algorithm for solution of variational inequality problems. RAIRO Oper. Res. 55, 2165–2180 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thong, D.V., Hieu, D.V., Rassias, T.M.: Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems. Optim. Lett. 14, 115–144 (2020)

  27. Thong, D.V., Triet, N.A., Li, X.H., Dong, Q.L.: Strong convergence of extragradient methods for solving bilevel pseudo-monotone variational inequality problems. Numer. Algorithms 83, 1123–1143 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thong, D.V., Hieu, D.V.: Modified Tseng’s extragradient algorithms for variational inequality problems. J. Fixed Point Theory Appl. 20, 18 (2018)

  29. Thong, D.V., Vinh, N.T., Cho, Y.J.: New strong convergence theorem of the inertial projection and contraction method for variational inequality problems. Numer. Algorithms 84, 285–305 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Thong, D.V., Vuong, P.T.: Modified Tseng’s extragradient methods for solving pseudo-monotone variational inequalities. Optimization 68, 2203–2222 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Thong, D.V., Yang, J., Cho, Y.J., Rassias, T.M.: Explicit extragradient-like method with adaptive stepsizes for pseudomonotone variational inequalities. Optim. Lett. 15, 2181–2199 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vuong, P.T., Shehu, Y.: Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer. Algorithms 81, 269–291 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, F., Xu, H.K.: Weak and strong convergence theorems for variational inequality and fixed point problems with Tseng’s extragradient method. Taiwan. J. Math. 16, 1125–1136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, H.K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. 66, 240–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yao, Y., Postolache, M., Yao, J.C.: Convergence of an extragradient algorithm for fixed point and variational inequality problems. J. Nonlinear Convex Anal. 20, 2623–2631 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Yao, Y., Postolache, M., Yao, J.C.: Strong convergence of an extragradient algorithm for variational inequality and fixed point problems. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 82, 3–12 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Yao, Y., Shahzad, N.: An algorithmic approach to the split variational inequality and fixed point problem. J. Nonlinear Convex Anal. 18, 977–991 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Zâlinescu, C.: Convex analysis in general vector spaces. World Scientific Publishing, Singapore (2002)

    Book  MATH  Google Scholar 

  39. Zhao, X., Yao, Y.: Modified extragradient algorithms for solving monotone variational inequalities and fixed point problems. Optimization 69, 1987–2002 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for their valuable comments and suggestions which lead to an improvement of this paper.

Funding

This work was supported by the NSF of China (Grant No. 12171062), the Natural Science Foundation of Chongqing (Grant No. cstc2020jcyj-msxmX0455, 2022NSCQ-JQX2745), Science and Technology Project of Chongqing Education Committee (Grant No. KJZD-K201900504), and the Program of Chongqing Innovation Research Group Project in University (Grant No. CXQT19018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Cai.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Author contribution

Xie and Cai wrote the main manuscript text and Dong finished the numerical examples. All authors reviewed the manuscript.

Availability of supporting data

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Human and animal ethics

Not applicable

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Cai, G. & Dong, QL. Strong convergence of Bregman projection method for solving variational inequality problems in reflexive Banach spaces. Numer Algor 93, 269–294 (2023). https://doi.org/10.1007/s11075-022-01414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01414-8

Keywords

Mathematics Subject Classification (2010)

Navigation