Skip to main content
Log in

The intrinsic Toeplitz structure and its applications in algebraic Riccati equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we derive a Toeplitz-structured closed form of the unique positive semi-definite stabilizing solution for the discrete-time algebraic Riccati equations, especially for the case that the state matrix is not stable. Based on the found form and fast Fourier transform, we propose a new algorithm for solving both discrete-time and continuous-time large-scale algebraic Riccati equations with low-rank structure. It works without unnecessary assumptions, complicated shift selection strategies, or matrix calculations of the cubic order with respect to the problem scale. Numerical examples are given to illustrate its features. Besides, we show that it is theoretically equivalent to several algorithms existing in the literature in the sense that they all produce the same sequence under the same parameter setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1

Similar content being viewed by others

Notes

  1. http://www.dm.unibo.it/∼simoncin/software.html

References

  1. Lancaster, P., Rodman, L.: Algebraic Riccati Equations. The Clarendon Press Oxford Sciece Publications (1995)

  2. Antsaklis, P. J., Michel, A. N.: A Linear Systems Primer. Birkhäuser (2007)

  3. Çimen, T.: State-dependent Riccati equations. IFAC Proc. 41, 3761–3775 (2008)

    Article  Google Scholar 

  4. Dieci, L.: Numerical integration of the differential Riccati equation and some related issues. SIAM J. Numer. Anal. 29, 781–815 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benner, P., Mena, H.: Numerical solution of the infinite-dimensional LQR-problem and the associated differential Riccati equations. Numer. Math. 26, 1–20 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bini, D. A., Iannazzo, B., Meini, B.: Numerical Solution of Algebraic Riccati Equations. Fundamentals of Algorithm, vol. 9. SIAM Publications (2012)

  7. Heyouni, M., Jbilou, K.: An extended block Arnoldi algorithm for large-scale solutions of continuous-time algebraic Riccati equation. Electron. Trans. Numer. Anal. 33, 53–62 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Sys. Contr. Lett. 60, 546–560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Druskin, V., Simoncini, V., Zaslavsky, M.: Adaptive tangential interpolation in rational Krylov subspaces for MIMO dynamical systems. SIAM J. Matrix Anal. Appl. 35, 476–498 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jbilou, K.: An Arnoldi based algorithm for large algebraic Riccati equations. Appl. Math. Lett. 19, 437–444 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wong, N., Balakrishnan, V.: Quadratic alternating direction implicit iteration for the fast solution of algebraic Riccati equations. In: Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems, pp. 373–376 (2005)

  12. Lin, Y., Simoncini, V.: A new subspace iteration method for the algebraic Riccati equation. J. Numer. Lin. Alg. Appl. 22(1), 26–47 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Benner, P., Bujanović, Z., Kürschner, P., Saak, J.: RADI: A low-rank ADI-type algorithm for large-scale algebraic Riccati equations. Numer. Math. 138, 301–330 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Benner, P., Saak, J.: A Newton-Galerkin-ADI method for large-scale algebraic Riccati equations. In: Applied Linear Algebra. GAMM Workshop Applied and Numerical Linear Algebra (2010)

  15. Benner, P., Heinkenschloss, M., Saak, J., Weichelt, H. K.: An inexact low-rank Newton-ADI merhod for large-scale Riccati equations. Appl. Numer. Math. 108, 125–142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chu, E. K. -W., Fan, H. Y., Lin, W. -W.: A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations. Linear Algebra Appl. 396, 55–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, T., Chu, E. K. -W., Lin, W. -W., Weng, P. C. -Y.: Solving large-scale continuous-time algebraic Riccati equations by doubling. J. Comput. Appl. Math. 237, 373–383 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Amodei, L., Buchot, J. -M.: An invariant subspace method for large-scale Riccati equation. Appl. Numer. Math. 60, 1067–1082 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Benner, P., Bujanović, Z.: On the solution of large-scale algebraic Riccati equations by using low-dimensional invariant subspaces. Linear Algebra Appl. 488, 430–459 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Benner, P., Bujanović, Z., Kürschner, P., Saak, J.: A numerical comparison of different solvers for large-scale, continuous-time algebraic Riccati equations and LQR problems. SIAM J. Sci. Comput. 42(2), 957–996 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kailath, T., Kung, S. -Y., Morf, M.: Displacement ranks of matrices and linear equations. J. Math. Anal. and Appl. 68, 395–407 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kailath, T., Chun, J.: Generalized Gohberg-Semencul formulas for matrix inversion. Oper. Theory: Adv. Appl. 40, 231–246 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Kailath, T., Chun, J.: Generalized displacement stucture for block-Toeplitz, Toeplitz-block, and Toeplitz-derived matrices. SIAM J. Matrix Anal. Appl. 15(1), 114–128 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kailath, T., Sayed, A. H.: Displacement structure: Theory and applications. SIAM Rev. 37(3), 297–386 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Friedlander, B., Morf, M., Kailath, T., Ljung, L.: New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices. Linear Algebra Appl. 27, 31–60 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chu, E. K. -W., Fan, H. -Y., Lin, W. -W., Wang, C. -S.: A structure-preserving doubling algorithm for periodic discrete-time algebraic Riccati equations. Internat. J. Control 77, 767–788 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lancaster, P., Rodman, L.: Solutions of continuous and discrete time algebraic riccati equations: A review. In: Bittanti, S., Laub, A.J., Willems, J.C (eds.) The Riccati Equations, pp 11–52, Springer (1991)

  28. Mehrmann, V. L.: The autonomous linear quadratic control problems. In: Lecture Notes in Control and Information Sciences vol. 163. Springer (1991)

  29. Ionescu, V., Oară, C., Weiss, M.: Generalized Riccati Theory and Robust Control: A Popov Function Approach, Wiley (1999)

  30. Anderson, B. D. O.: Second-order convergent algorithms for the steady-state Riccati equation. Internat. J. Control 28(2), 295–306 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Huang, T. -M., Lin, W. -W.: Structured doubling algorithms for weakly stabilizing Hermitian solutions of algebraic Riccati equations. Linear Algebra Appl. 430, 1452–1478 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guo, Z.-C., Chu, E.K.-W., Liang, X., Lin, W.-W.: A decoupled form of the structure-preserving doubling algorithm with low-rank structures. ArXiv e-prints arXiv:https://arxiv.org/abs/2005.08288 [math.NA], 18 pages (2020)

  33. Strang, G.: A proposal for Toeplitz matrix calculations. Stud. Appl. Math. 74, 171–176 (1986)

    Article  MATH  Google Scholar 

  34. Jin, X.: Developments and Applications of Block Toeplitz Iterative Solvers. Science Press (2002)

  35. Jin, X.: Preconditioning Techniques for Toeplitz Systems. Higher Education Press (2010)

  36. Lin, W. -W., Xu, S. -F.: Convergence analysis of structure-preserving doubling algirithm for Riccati-type matrix equations. SIAM J. Matrix Anal. Appl. 28, 26–39 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Huang, T. -M., Li, R. -C., Lin, W. -W.: Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations. Fundamentals of Algorithms. SIAM (2018)

  38. Wong, N., Balakrishnan, V.: Fast positive-real balanced truncation via quadratic alternating direction implicit iteration. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 26(9), 1725–1731 (2007)

    Article  Google Scholar 

  39. Güttel, S.: Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection. GAMM-Mitteilungen 36, 8–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Simoncini, V., Szyld, D., Monsalve, M.: On two numerical methods for the solution of large-scale algebraic Riccati equations. IMA J. Numer. Anal. 34, 904–920 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Benner, P., Li, J.-R., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. J. Numer. Lin. Alg. Appl., 755–777 (2008)

  42. Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: A state of the art survey. GAMM-Mitteilungen 36, 32–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Saak, J., Köhler, M., Benner, P.: M-M.E.S.S.-2.1 – The Matrix Equations Sparse Solvers library see also: https://doi.org/https://www.mpi-magdeburg.mpg.de/projects/mess. https://doi.org/10.5281/zenodo.4719688 (2021)

  44. Oberwolfach Benchmark Collection: Steel Profile. hosted at MORwiki – Model Order Reduction Wiki (2005). http://modelreduction.org/index.php/Steel_Profile

  45. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Software 38(1), 25 pages (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Massoudi, A., Opmeer, M. R., Reis, T.: Analysis of an iteration method for the algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 37, 624–648 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Z.-C. Guo is supported in part by National Natural Science Foundation of China Fund NSFC-11901290 and Fundamental Research Funds for the Central Universities. X. Liang is supported in part by National Natural Science Foundation of China NSFC-11901340.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Data availability

Data will be made available on reasonable request.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Displacement rank and Toeplitz matrix

Appendix. Displacement rank and Toeplitz matrix

In order to prove Lemma 1, we first give a few results to the displacement rank and Toeplitz matrices, and interested readers are referred to the review paper [24] and the references therein.

For any matrix \(R\in \mathbb {R}^{pn\times pn}\), its (±)-displacement rank α±(R,p) with respect to block size p × p, is defined by

$$ \alpha_{+}(R,p):=\text{rank}_{p}(R-Z_{n,p}RZ_{n,p}^{\text{T}}),\qquad \alpha_{-}(R,p):=\text{rank}_{p}(R-Z_{n,p}^{\text{T}}RZ_{n,p}),\qquad $$

where \(Z_{n,p}=\begin {bmatrix} 0 & 0 \\ I_{(n-1)p} & 0 \end {bmatrix}_{pn\times pn}\), and rankp(⋅) is considered as the rank of the linear transformation on the module \(\mathbb {R}^{np\times p}\) over the ring \(\mathbb {R}^{p\times p}\). For the case p = 1, rankp(⋅) = rank(⋅), the ordinary rank of matrices in \(\mathbb {R}^{n\times n}\).

The definition is based on the following result, namely Lemma 13.

Lemma 13

[21] Given \(R_1,R_2\in \mathbb {R}^{pn\times p}\) and \(R\in \mathbb {R}^{pn\times pn}\), then

$$ \begin{array}{@{}rcl@{}} R-Z_{n,p}RZ_{n,p}^{\text{T}} = R_{1}R_{2}^{\text{T}} &\iff R=\mathcal{L}_{p\times p}(R_{1})\mathcal{L}_{p\times p}(R_{2})^{\text{T}}, \\ R-Z_{n,p}^{\text{T}}RZ_{n,p} = R_{1}R_{2}^{\text{T}} &\iff R=\mathcal{U}_{p\times p}(R_{1})\mathcal{U}_{p\times p}(R_{2})^{\text{T}}. \end{array} $$

Lemma 13 implies that for a matrix its displacement rank is related to how it can be expressed as a sum of products of block-Toeplitz matrices, as is shown in Lemma 14.

Lemma 14

[21, 23, 24] Given a matrix \(R\in \mathbb {R}^{pn\times pn}\).

  1. 1.

    Its (+)-displacement rank α+(R,p) is the smallest integer β such that R can be written in the form

    $$ R=\sum\limits_{i=1}^{\beta}\mathcal{L}_{p\times p}(R_{i})\mathcal{U}_{p\times p}(\widetilde R_{i}), $$
    (A2a)

    where \(R_{i},\widetilde R_{i}\in \mathbb {R}^{pn\times p}\).

  2. 2.

    Its (−)-displacement rank α(R,p) is the smallest integer β such that R can be written in the form

    $$ R=\sum\limits_{i=1}^{\beta}\mathcal{U}_{p\times p}(R_{i})\mathcal{L}_{p\times p}(\widetilde R_{i}), $$
    (A2b)

    where \(R_i,\widetilde R_i\in \mathbb {R}^{pn\times p}\).

  3. 3.

    If R is symmetric and positive semi-definite, (A2a) and (A2b) can be replaced respectively by

    $$ R=\sum\limits_{i=1}^{\beta}\mathcal{L}_{p\times p}(R_{i})\mathcal{L}_{p\times p}(R_{i})^{\text{T}},\qquad \text{and} \qquad R=\sum\limits_{i=1}^{\beta}\mathcal{U}_{p\times p}(R_{i})\mathcal{U}_{p\times p}(R_{i})^{\text{T}}. $$
  4. 4.

    If R is nonsingular, then α+(R,p) = α(R− 1,p),α(R,p) = α+(R− 1,p).

Lemma 14 demonstrates the relation between the displacement ranks of a matrix and its inverse, which is actually the theoretical foundation of the fast and superfast algorithms on Toeplitz matrices.

The following result, namely Lemma 15, gives an expression of the inverse related to the displacement rank.

Lemma 15

[25] Given \(R\in \mathbb {R}^{pn\times pn}\), suppose

  1. 1.

    R is nonsingular, and \( R^{-1}=\begin {bmatrix} Q_{1,t} & Q^L_1\\ Q_1 & *\\ \end {bmatrix}=\begin {bmatrix} * & Q_2 \\ Q^L_2 & Q_{2,b}\\ \end {bmatrix}\) where \(Q_{1,t},Q_{2,b}\in \mathbb {R}^{p\times p}\) are nonsingular;

  2. 2.

    \(R-Z_{n,p}RZ_{n,p}^{\text {T}}=\begin {bmatrix} * & * \\ * & D_1{\Sigma } D_2^{\text {T}} \end {bmatrix}\) where \(D_1,D_2\in \mathbb {R}^{p(n-1)\times p\alpha }\) and Σ is a diagonal matrix whose diagonal entries are ± 1;

  3. 3.

    writing \(R=\begin {bmatrix} * & * \\ * & R_s\\ \end {bmatrix}\) where \(R_s\in \mathbb {R}^{p(n-1)\times p(n-1)}\), there exist \(Q_3,Q^L_3\in \mathbb {R}^{p(n-1)\times p\alpha }\) such that \(R_sQ_3=D_1,Q^L_3R_s=D_2^{\text {T}}\).

Then

$$ \begin{array}{@{}rcl@{}} &&{\kern-3.5pc} R^{-1}= -\mathcal{U}_{p\times p}\left( \begin{bmatrix} Q_{1}\\0_{p\times p}\\ \end{bmatrix}\right)(I_{n}\otimes Q_{1,t})^{-1}\mathcal{U}_{p\times p}\left( \begin{bmatrix} {Q^{L}_{1}}&0_{p\times p} \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\ &&\quad +\mathcal{U}_{p\times p}\left( \begin{bmatrix} Q_{2}\\Q_{2,b}\\ \end{bmatrix}\right)(I_{n}\otimes Q_{2,b})^{-1}\mathcal{U}_{p\times p}\left( \begin{bmatrix} {Q^{L}_{2}}&Q_{2,b}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\ &&\quad +\mathcal{U}_{p\times p\alpha }\left( \begin{bmatrix} Q_{3}\\0_{p\times p\alpha}\\ \end{bmatrix}\right)(I_{n}\otimes W)^{-1}\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} {Q^{L}_{3}}&0_{p\alpha\times p}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}, \end{array} $$
(A3a)

or alternatively,

$$ \begin{array}{@{}rcl@{}} &&{\kern-3.5pc} R^{-1}= \mathcal{L}_{p\times p}\left( \begin{bmatrix} Q_{1,t}\\Q_{1}\\ \end{bmatrix}\right)(I_{n}\otimes Q_{1,t})^{-1}\mathcal{L}_{p\times p}\left( \begin{bmatrix} Q_{1,t}&{Q^{L}_{1}} \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\ &&\quad -\mathcal{L}_{p\times p}\left( \begin{bmatrix} 0_{p\times p}\\Q_{2}\\ \end{bmatrix}\right)(I_{n}\otimes Q_{2,b})^{-1}\mathcal{L}_{p\times p}\left( \begin{bmatrix} 0_{p\times p}&{Q^{L}_{2}}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\&&\quad -\mathcal{L}_{p\times p\alpha}\left( \begin{bmatrix} 0_{p\times p\alpha}\\Q_{3}\\ \end{bmatrix}\right)(I_{n}\otimes W)^{-1}\mathcal{L}_{p\times p\alpha}\left( \begin{bmatrix} 0_{p\alpha\times p}&{Q^{L}_{3}}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} , \end{array} $$
(A3b)

where \(W={\Sigma }-Q^L_3D_1\).

Moreover, if R is symmetric, then there exists a factorization to make D1 = D2; for that case, (15) can be rewritten by \(Q^L_1=Q_1^{\text {T}},Q^L_2=Q_2^{\text {T}},Q^L_3=Q_3^{\text {T}}\).

Remark 2

Item 2 of Lemma 15 implies that \(R-Z_{n,p}^{\text {T}}RZ_{n,p}=\begin {bmatrix} -D_1{\Sigma } D_2^{\text {T}} & *\\ * &* \end {bmatrix}\).

Note that (15) presents a sum of α + 2 products of block-Toeplitz matrices, in which the number of terms may not be the smallest one, namely α(R,p).

In the following, we will derive a sum of the α+(R,p) = α(R− 1,p) terms, called a shortest sum, to coincide with Lemma 14. Using the same way a sum of α(R,p) = α+(R− 1,p) terms can also be derived, so we omit the details.

Write \(R=\begin {bmatrix} R_{11} & R_{12} \\ R_{21} & R_s\\ \end {bmatrix}\), and then \(R-Z_{n,p}RZ_{n,p}^{\text {T}}=\begin {bmatrix} R_{11} & R_{12}\\ R_{21} & D_1{\Sigma } D_2^{\text {T}}\\ \end {bmatrix}\). Thus, αα+(R,p) ≤ α + 2, provided that \(\text {rank}(D_1{\Sigma } D_2^T)=\text {rank}({\Sigma })=p\alpha \).

On the other hand, by (3), under sufficient nonsingular conditions, it is easy to have

$$ \begin{array}{@{}rcl@{}} &&{\kern-2.1pc} \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{s} \\ \end{bmatrix}^{-1} \\&=& \begin{bmatrix} R_{11}^{-1}+R_{11}^{-1}R_{12}(R_{s}-R_{21}R_{11}^{-1}R_{12})^{-1}R_{21}R_{11}^{-1} & -R_{11}^{-1}R_{12}(R_{s}-R_{21}R_{11}^{-1}R_{12})^{-1}\\ -(R_{s}-R_{21}R_{11}^{-1}R_{12})^{-1}R_{21}R_{11}^{-1} &(R_{s}-R_{21}R_{11}^{-1}R_{12})^{-1} \\ \end{bmatrix} \\&=&\begin{bmatrix} (R_{11}-R_{12}R_{s}^{-1}R_{21})^{-1} &-(R_{11}-R_{12}R_{s}^{-1}R_{21})^{-1}R_{12}R_{s}^{-1}\\ -R_{s}^{-1}R_{21}(R_{11}-R_{12}R_{s}^{-1}R_{21})^{-1} & R_{s}^{-1}+R_{s}^{-1}R_{21}(R_{11}-R_{12}R_{s}^{-1}R_{21})^{-1}R_{12}R_{s}^{-1}\\ \end{bmatrix} . \end{array} $$

Compared with the conditions,

$$ \begin{array}{@{}rcl@{}} Q_{1} = -R_{s}^{-1}R_{21}Q_{1,t},\quad {Q^{L}_{1}} = -Q_{1,t}R_{12}R_{s}^{-1},\quad Q_{1,t} = (R_{11}-R_{12}R_{s}^{-1}R_{21})^{-1}. \end{array} $$

If α+(R,p) = α, then it has to hold that \(R-Z_{n,p}RZ_{n,p}^{\text {T}}=\begin {bmatrix} S_1^{\text {T}}{\Sigma }^{-1}S_2 & S_1^{\text {T}} D_2^{\text {T}}\\ D_1S_2 & D_1{\Sigma } D_2^{\text {T}}\\ \end {bmatrix}\) for some \(S_1,S_2\in \mathbb {R}^{p\alpha \times p}\). Clearly S1,S2 are of full column rank for R is nonsingular. Noticing Σ− 1 = Σ, we have

$$ \begin{array}{@{}rcl@{}} Q_{1} &=& -R_{s}^{-1}D_{1}S_{2}Q_{1,t}=-Q_{3}S_{2}Q_{1,t},\quad\\ {Q^{L}_{1}} &=& -Q_{1,t}S_{1}^{\text{T}}D_{2}^{\text{T}}R_{s}^{-1}=-Q_{1,t}S_{1}^{\text{T}}{Q^{L}_{3}},\quad\\ Q_{1,t} &=& (S_{1}^{\text{T}}{\Sigma}^{-1}S_{2}-S_{1}^{\text{T}}D_{2}^{\text{T}}R_{s}^{-1}D_{1}S_{2})^{-1} = (S_{1}^{\text{T}}{\Sigma}^{-1}S_{2}-S_{1}^{\text{T}}{Q^{L}_{3}}D_{1}S_{2})^{-1}=(S_{1}^{\text{T}}WS_{2})^{-1}. \end{array} $$

Thus

$$ \begin{array}{@{}rcl@{}} &&{\kern-2.5pc}\mathcal{U}_{p\times p}\left( \begin{bmatrix} Q_{1}\\0\\ \end{bmatrix}\right)(I_{n}\otimes Q_{1,t})^{-1}\mathcal{U}_{p\times p}\left( \begin{bmatrix} {Q^{L}_{1}}&0 \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\&=&\!\mathcal{U}_{p\times p}\!\left( \begin{bmatrix} -Q_{3}S_{2}Q_{1,t}\\0\\ \end{bmatrix}\right)(I_{n}\otimes Q_{1,t})^{-1}\mathcal{U}_{p\times p}\left( \begin{bmatrix} -Q_{1,t}S_{1}^{\text{T}}{Q^{L}_{3}}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\&=&\!\mathcal{U}_{p\times p\alpha}\!\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)\!(I_{n}\! \otimes\! S_{2}Q_{1,t})(I_{n}\otimes Q_{1,t})^{-1}\!(I_{n}\!\otimes\! Q_{1,t}S_{1}^{\text{T}})\mathcal{U}_{p\times p\alpha}\!\left( \begin{bmatrix} {Q^{L}_{3}}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}\!\!\!\!\!\!\!\!\!\\ &=&\!\mathcal{U}_{p\times p\alpha}\!\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)(I_{n}\otimes S_{2}Q_{1,t}S_{1}^{\text{T}})\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} {Q^{L}_{3}}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\&=&\!\mathcal{U}_{p\times p\alpha}\!\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)\left( I_{n}\otimes S_{2}(S_{1}^{\text{T}}WS_{2})^{-1}S_{1}^{\text{T}}\right)\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} {Q^{L}_{3}}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} . \end{array} $$

Note that

$$ \begin{array}{@{}rcl@{}} \left[W^{-1}-S_{2}\left( S_{1}^{\text{T}}WS_{2}\right)^{-1}S_{1}^{\text{T}}\right]WS_{2} =0 . \end{array} $$

Complement S2 to a nonsingular matrix \(\begin {bmatrix} S_2 & S_2^{c} \end {bmatrix}\), and then

$$ \begin{array}{@{}rcl@{}} \left[\!W^{-1}\! -\! S_{2}\!\left( \!S_{1}^{\text{T}}WS_{2}\!\right)^{-1}\!S_{1}^{\text{T}}\!\right]\! W\! \begin{bmatrix} S_{2} & {S_{2}^{c}} \end{bmatrix} \! &=&\! \begin{bmatrix} S_{2} & {S_{2}^{c}} \end{bmatrix}\begin{bmatrix} 0_{p\times p} & -\left( S_{1}^{\text{T}}WS_{2}\right)^{-1}S_{1}^{\text{T}}W{S_{2}^{c}}\\ 0 & I_{p(\alpha-1)}\\ \end{bmatrix} \\ & = &\! \begin{bmatrix} S_{2} & {S_{2}^{c}} \end{bmatrix}\!\begin{bmatrix} \! -\!\left( S_{1}^{\text{T}}WS_{2}\right)^{-1}S_{1}^{\text{T}}W{S_{2}^{c}}\\ I_{p(\alpha-1)}\\ \end{bmatrix}\!\begin{bmatrix} 0 & \!I_{p(\alpha-1)} \end{bmatrix}\!, \end{array} $$

whose rank is p(α − 1). Write

$$ \begin{array}{@{}rcl@{}} W_{1}&=&\begin{bmatrix} S_{2} & {S_{2}^{c}} \end{bmatrix}\begin{bmatrix} -\left( S_{1}^{\text{T}}WS_{2}\right)^{-1}S_{1}^{\text{T}}W{S_{2}^{c}}\\ I_{p(\alpha-1)} \end{bmatrix}\in \mathbb{R}^{p\alpha\times p(\alpha-1)}, \qquad \\ {W^{L}_{1}}&=&\begin{bmatrix} 0 & I_{p(\alpha-1)} \end{bmatrix}\begin{bmatrix} S_{2} & {S_{2}^{c}} \end{bmatrix}^{-1}W^{-1}\in \mathbb{R}^{p(\alpha-1)\times p\alpha}, \end{array} $$

and then \(W^{-1}-S_2\left (S_1^{\text {T}}WS_2\right )^{-1}S_1^{\text {T}}=W_1W^L_1\). Hence

$$ \begin{array}{@{}rcl@{}} R^{-1} &= & \mathcal{U}_{p\times p}\left( \begin{bmatrix} Q_{2}\\Q_{2,b}\\ \end{bmatrix}\right)(I_{n}\otimes Q_{2,b})^{-1}\mathcal{U}_{p\times p}\left( \begin{bmatrix} {Q^{L}_{2}}&Q_{2,b}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}\\ &&+~\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)(I_{n}\otimes W_{1}{W^{L}_{1}})\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} {Q^{L}_{3}}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}\\ &=& \mathcal{U}_{p\times p}\left( \begin{bmatrix} Q_{2}\\Q_{2,b}\\ \end{bmatrix}\right)(I_{n}\otimes Q_{2,b})^{-1}\mathcal{U}_{p\times p}\left( \begin{bmatrix} {Q^{L}_{2}}&Q_{2,b}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}\\ && +~\mathcal{U}_{p\times p(\alpha-1)}\left( \begin{bmatrix} Q_{3}W_{1}\\0\\ \end{bmatrix}\right)\mathcal{U}_{p\times p(\alpha-1)}\left( \begin{bmatrix} {W^{L}_{1}}{Q^{L}_{3}}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} . \end{array} $$
(A4)

If α+(R,p) = α + 1, then it holds that

$$ \begin{array}{@{}rcl@{}} R-Z_{n,p}RZ_{n,p}^{\text{T}} &=\begin{bmatrix} S_{1}^{\text{T}}{\Sigma}^{-1}S_{2} & S_{1}^{\text{T}} D_{2}^{\text{T}}\\ D_{1}S_{2} & D_{1}{\Sigma} D_{2}^{\text{T}}\\ \end{bmatrix}+\begin{bmatrix} S_{3} & D_{3}^{\text{T}}\\0 & 0 \end{bmatrix} \end{array} $$
(A5a)
$$ \begin{array}{@{}rcl@{}} &\quad\text{or}\quad \begin{bmatrix} S_{1}^{\text{T}}{\Sigma}^{-1}S_{2} & S_{1}^{\text{T}} D_{2}^{\text{T}}\\ D_{1}S_{2} & D_{1}{\Sigma} D_{2}^{\text{T}}\\ \end{bmatrix}+\begin{bmatrix} S_{3} & 0\\ D_{3} & 0 \end{bmatrix} \end{array} $$
(A5b)

for some \(S_1,S_2\in \mathbb {R}^{p\alpha \times p}\), \(S_3\in \mathbb {R}^{p\times p}\) and \(D_3\in \mathbb {R}^{p(n-1)\times p}\).

Consider (A5a). Then,

$$ \begin{array}{@{}rcl@{}} Q_{1} &= &-R_{s}^{-1}D_{1}S_{2}Q_{1,t}=-Q_{3}S_{2}Q_{1,t},\quad\\ {Q^{L}_{1}} &=& -Q_{1,t}(S_{1}^{\text{T}}D_{2}^{\text{T}}+D_{3}^{\text{T}})R_{s}^{-1}=-Q_{1,t}S_{1}^{\text{T}}{Q^{L}_{3}}-Q_{1,t}D_{3}^{\text{T}}R_{s}^{-1},\quad\\ Q_{1,t} &= &(S_{1}^{\text{T}}{\Sigma}^{-1}S_{2}+S_{3}-(S_{1}^{\text{T}}D_{2}^{\text{T}}+D_{3}^{\text{T}})R_{s}^{-1}D_{1}S_{2})^{-1} \\&=& (S_{1}^{\text{T}}{\Sigma}^{-1}S_{2}+S_{3}-D_{3}^{\text{T}}Q_{3}S_{2}-S_{1}^{\text{T}}{Q^{L}_{3}}D_{1}S_{2})^{-1} \\&=&(S_{3}-D_{3}^{\text{T}}Q_{3}S_{2}+S_{1}^{\text{T}}WS_{2})^{-1}. \end{array} $$

Thus,

$$ \begin{array}{@{}rcl@{}} &&{\kern-2.6pc}\mathcal{U}_{p\times p}\left( \begin{bmatrix} Q_{1}\\0\\ \end{bmatrix}\right)(I_{n}\otimes Q_{1,t})^{-1}\mathcal{U}_{p\times p}\left( \begin{bmatrix} {Q^{L}_{1}}&0 \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\&=&\mathcal{U}_{p\times p}\left( \begin{bmatrix} -Q_{3}S_{2}Q_{1,t}\\0\\ \end{bmatrix}\right)(I_{n}\otimes Q_{1,t})^{-1}\mathcal{U}_{p\times p}\left( \begin{bmatrix} -Q_{1,t}S_{1}^{\text{T}}{Q^{L}_{3}}-Q_{1,t}D_{3}^{\text{T}}R_{s}^{-1}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}\!\!\!\!\!\!\!\!\!\!\!\\ &=& \mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)(I_{n}\otimes S_{2}Q_{1,t})(I_{n}\otimes Q_{1,t})^{-1}(I_{n}\otimes Q_{1,t}S_{1}^{\text{T}})\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} {Q^{L}_{3}}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\ && + \mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)(I_{n}\otimes S_{2}Q_{1,t})(I_{n}\otimes Q_{1,t})^{-1}(I_{n}\otimes Q_{1,t})\mathcal{U}_{p\times p}\left( \begin{bmatrix} D_{3}^{\text{T}}R_{s}^{-1}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}\!\!\!\!\!\!\!\!\!\!\! \\&=& \mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)(I_{n}\otimes S_{2}Q_{1,t}S_{1}^{\text{T}})\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} {Q^{L}_{3}}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\ && + \mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)(I_{n}\otimes S_{2}Q_{1,t})\mathcal{U}_{p\times p}\left( \begin{bmatrix} D_{3}^{\text{T}}R_{s}^{-1}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\&=& \mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)(I_{n}\otimes S_{2}(S_{3}-D_{3}^{\text{T}}Q_{3}S_{2}+S_{1}^{\text{T}}WS_{2})^{-1}S_{1}^{\text{T}})\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} {Q^{L}_{3}}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}\!\!\!\! \\ && + \mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)(I_{n}\otimes S_{2}Q_{1,t})\mathcal{U}_{p\times p}\left( \begin{bmatrix} D_{3}^{\text{T}}R_{s}^{-1}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}. \end{array} $$

Since

$$ \begin{array}{@{}rcl@{}} &&{\kern-2.4pc}W^{-1}-S_{2}(S_{3}-D_{3}^{\text{T}}Q_{3}S_{2}+S_{1}^{\text{T}}WS_{2})^{-1}S_{1}^{\text{T}} \\&=&W^{-1}\left( W-WS_{2}(S_{3}-D_{3}^{\text{T}}Q_{3}S_{2}+S_{1}^{\text{T}}WS_{2})^{-1}S_{1}^{\text{T}}W\right)W^{-1} \\&\overset{(3)}{=}& W^{-1}\left( W^{-1}+S_{2}(S_{3}-D_{3}^{\text{T}}Q_{3}S_{2})^{-1}S_{1}^{\text{T}}\right)^{-1}W^{-1} \\&=& \left( W+WS_{2}(S_{3}-D_{3}^{\text{T}}Q_{3}S_{2})^{-1}S_{1}^{\text{T}}W\right)^{-1} =:W_{1}^{-1} , \end{array} $$

we have

$$ \begin{array}{@{}rcl@{}} R^{-1} &=& \mathcal{U}_{p\times p}\left( \begin{bmatrix} Q_{2}\\Q_{2,b}\\ \end{bmatrix}\right)(I_{n}\otimes Q_{2,b})^{-1}\mathcal{U}_{p\times p}\left( \begin{bmatrix} {Q^{L}_{2}}&Q_{2,b}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\ && +~\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)(I_{n}\otimes W_{1})^{-1}\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} {Q^{L}_{3}}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}\\ && -~ \mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)(I_{n}\otimes S_{2}Q_{1,t})\mathcal{U}_{p\times p}\left( \begin{bmatrix} D_{3}^{\text{T}}R_{s}^{-1}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}\\ &=& \mathcal{U}_{p\times p}\left( \begin{bmatrix} Q_{2}\\Q_{2,b}\\ \end{bmatrix}\right)(I_{n}\otimes Q_{2,b})^{-1}\mathcal{U}_{p\times p}\left( \begin{bmatrix} {Q^{L}_{2}}&Q_{2,b}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\ &&+~\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)(I_{n}\otimes W_{1})^{-1}\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} {Q^{L}_{3}}-W_{1}S_{2}Q_{1,t}D_{3}^{\text{T}}R_{s}^{-1}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} .\\ \end{array} $$
(A6)

Similarly, for (A5b),

$$ \begin{array}{@{}rcl@{}} R^{-1} &=& \mathcal{U}_{p\times p}\left( \begin{bmatrix} Q_{2}\\Q_{2,b}\\ \end{bmatrix}\right)(I_{n}\otimes Q_{2,b})^{-1}\mathcal{U}_{p\times p}\left( \begin{bmatrix} {Q^{L}_{2}}&Q_{2,b}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}\\ && +~\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} Q_{3}-R_{s}^{-1}D_{3}Q_{1,t}S_{1}^{\text{T}}W_{1}\\0\\ \end{bmatrix}\right)(I_{n}\otimes W_{1})^{-1}\mathcal{U}_{p\times p\alpha}\left( \begin{bmatrix} {Q^{L}_{3}}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}},\\ \end{array} $$
(A7)

where \(W_1=W+WS_2(S_3-S_1^{\text {T}}Q^L_3D_3)^{-1}S_1^{\text {T}}W\).

To sum up, we have Lemma 16.

Lemma 16

Given \(R\in \mathbb {R}^{pn\times pn}\), suppose the conditions in Lemma 15 hold. Then αα+(R,p) ≤ α + 2, and the following statements hold.

  1. 1.

    if α+(R,p) = α, then (A4) is a shortest sum.

  2. 2.

    if α+(R,p) = α + 1, then (A6) or (A7) is a shortest sum.

  3. 3.

    if α+(R,p) = α + 2, then (A3a) is a shortest sum.

Moreover, if R is symmetric, then there exists a factorization to make D1 = D2; for that case, (A3a), (A4), (A6) and (A7) can be rewritten by \(Q^L_1=Q_1^{\text {T}},Q^L_2=Q_2^{\text {T}},Q^L_3=Q_3^{\text {T}},S_1=S_2,D_3=0\).

Then we devote Lemma 17.

Lemma 17

Given \(Y\in \mathbb {R}^{p_1\times p_2}\), \(Y^L\in \mathbb {R}^{p_2\times p_1}\), \(D_{t-1}\in \mathbb {R}^{p_1(t-1)\times p_2}\), \(D^L_{t-1}\in \mathbb {R}^{p_2\times p_1(t-1)}\), let

$$ \begin{array}{@{}rcl@{}} T_{t} &=\mathcal{L}_{p_{1}\times p_{2}}\left( \begin{bmatrix} Y \\ D_{t-1}\\ \end{bmatrix}\right) =\begin{bmatrix} Y & 0\\ D_{t-1} & T_{t-1} \end{bmatrix}\in \mathbb{R}^{p_{1}t\times p_{2}t} ,\quad \\ {T^{L}_{t}} &=\mathcal{L}_{p_{1}\times p_{2}}\left( \begin{bmatrix} Y^{L}& D^{L}_{t-1}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} =\begin{bmatrix} Y^{L} & D^{L}_{t-1}\\ 0 & T^{L}_{t-1} \end{bmatrix}\in \mathbb{R}^{p_{2}t\times p_{1}t} . \end{array} $$

If \(I_{p_1t}-T_tT^L_t\) is nonsingular, then

$$ \begin{array}{@{}rcl@{}} (I_{p_{1}t}-T_{t}{T^{L}_{t}})^{-1}\!&=&\! \mathcal{U}_{p_{1}\times p_{1}}\left( \begin{bmatrix} Q_{2}\\Q_{2,b}\\ \end{bmatrix}\right)(I_{t}\otimes Q_{2,b})^{-1}\mathcal{U}_{p_{1}\times p_{1}}\left( \begin{bmatrix} {Q^{L}_{2}}~~ Q_{2,b}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}\\ && \!+ \mathcal{U}_{p_{1}\times p_{2}}\!\left( \begin{bmatrix} Q_{3}\\0_{p_{1}\times p_{2}}\\ \end{bmatrix}\right)\!(I_{t}\otimes \left[W+WY^{L}Y W\right])^{-1}\mathcal{U}_{p_{1}\times p_{2}}\!\left( \begin{bmatrix} {Q^{L}_{3}}~~0_{p_{2}\times p_{1}}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} ,\!\!\\ \end{array} $$
(A8a)

where the following equations are solvable and Q2,b,W + WYLY W are nonsingular:

$$ \begin{array}{@{}rcl@{}} &&{}{Q^{L}_{3}}\left( I_{p_{1}(t-1)}-D_{t-1}D^{L}_{t-1}-T_{t-1}T^{L}_{t-1}\right)=D^{L}_{t-1}, \end{array} $$
(A8b)
$$ \begin{array}{@{}rcl@{}} \left( I_{p_{1}t}-D_{t-1}D^{L}_{t-1}-T_{t-1}T^{L}_{t-1}\right)Q_{3}&=&D_{t-1}, W=-(I_{p_{2}}+{Q^{L}_{3}}D_{t-1}), \end{array} $$
(A8c)
$$ \begin{array}{@{}rcl@{}} \begin{bmatrix} {Q^{L}_{2}}& Q_{2,b} \end{bmatrix}(I_{p_{1}t}-T_{t}{T^{L}_{t}}) &=& \begin{bmatrix} 0 & I_{p_{1}}\\ \end{bmatrix}, \end{array} $$
(A8d)
$$ \begin{array}{@{}rcl@{}} (I_{p_{1}t}-T_{t}{T^{L}_{t}}) \begin{bmatrix} Q_{2}\\ Q_{2,b} \end{bmatrix}&=& \begin{bmatrix} 0 \\ I_{p_{1}}\\ \end{bmatrix}, \qquad Q_{2,b}\in \mathbb{R}^{p_{1}\times p_{1}}. \end{array} $$
(A8e)

Proof

First consider the case p1 = p2 = p. Since

$$ I_{pt}-T_{t}{T^{L}_{t}}=\begin{bmatrix} I_{p}-Y Y^{L} & -Y D^{L}_{t-1} \\ -D_{t-1}Y^{L} & I_{p(t-1)}-D_{t-1}D^{L}_{t-1}-T_{t-1}T^{L}_{t-1} \end{bmatrix}, $$

and

$$ \begin{array}{@{}rcl@{}} &&{\kern-2.5pc}(I_{pt}-T_{t}{T^{L}_{t}})-Z_{t,p}(I_{pt}-T_{t}{T^{L}_{t}})Z_{t,p}^{\text{T}} \\&=&I_{pt}-Z_{t,p}Z_{t,p}^{\text{T}}-T_{t}{T^{L}_{t}}+Z_{t,p}T_{t}{T^{L}_{t}}Z_{t,p}^{\text{T}} \\&=&\begin{bmatrix} I_{p} & \\ & 0 \end{bmatrix}-\begin{bmatrix} Y & 0\\ D_{t-1} & T_{t-1} \end{bmatrix}\begin{bmatrix} Y^{L} & D^{L}_{t-1}\\ 0 & T^{L}_{t-1} \end{bmatrix}+\begin{bmatrix} 0 & 0\\ T_{t-1} & 0\\ \end{bmatrix}\begin{bmatrix} 0& T^{L}_{t-1} \\0&0\\ \end{bmatrix} \\& =&\begin{bmatrix} I_{p}-Y Y^{L} & -Y D^{L}_{t-1} \\ -D_{t-1}Y^{L} & -D_{t-1}D^{L}_{t-1} \end{bmatrix} , \end{array} $$

we have \(\alpha _+(I_{pt}-T_tT^L_t,p)=2\). By Lemma 16, since α = 1, the case falls in Item 2 with substitutions

$$ D_{3}\leftarrow 0, S_{3}\leftarrow I_{p},D_{1}\leftarrow D_{t-1},{\Sigma}\leftarrow -I_{p(t-1)},D_{2}^{\text{T}}\leftarrow D^{L}_{t-1}, S_{1}^{\text{T}}\leftarrow Y, S_{2}\leftarrow Y^{L}. $$

Then (A6) (or equivalently (A7)) becomes

$$ \begin{array}{@{}rcl@{}} (I_{pt}-T_{t}{T^{L}_{t}})^{-1} \! &= &\! \mathcal{U}_{p\times p}\left( \begin{bmatrix} Q_{2}\\Q_{2,b}\\ \end{bmatrix}\right)(I_{t}\otimes Q_{2,b})^{-1}\mathcal{U}_{p\times p}\left( \begin{bmatrix} {Q^{L}_{2}}~~Q_{2,b}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\ && +\mathcal{U}_{p\times p}\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)(I_{t}\otimes [W+WY^{L}YW])^{-1}\mathcal{U}_{p\times p}\left( \begin{bmatrix} {Q^{L}_{3}}~~0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} ,\\ \end{array} $$
(A6)

where \(Q_2,Q_{2,b},Q^L_2,Q_3,Q^L_3,W\) is as in (17).

Then consider the case p1 > p2. Complement Y to a p1 × p1 matrix \(\widetilde Y=\begin {bmatrix} Y & 0 \end {bmatrix}\) and similarly for \(\widetilde D_{t-1}=\begin {bmatrix} D_{t-1} & 0 \end {bmatrix}, \widetilde Y^L=\begin {bmatrix} Y^L\\0 \end {bmatrix}, \widetilde D^L_{t-1}=\begin {bmatrix} D^L_{t-1} \\ 0 \end {bmatrix}\). Immediately we are able to use the result above on the case p1 = p2 to obtain \( \left [I_{p_1t}-{\mathscr{L}}_{p_1\times p_1}\left (\begin {bmatrix}\widetilde Y\\\widetilde D_{t-1}\end {bmatrix}\right ){\mathscr{L}}_{p_1\times p_1}\left (\begin {bmatrix}\widetilde Y^L&\widetilde D^L_{t-1}\end {bmatrix}^{\text {T}}\right )^{\text {T}}\right ]^{-1}\). Note that

$$ \begin{array}{@{}rcl@{}} \mathcal{L}_{p_{1}\times p_{1}}\!\left( \begin{bmatrix}\widetilde Y\\\widetilde D_{t{\kern-.5pt}-{\kern-.5pt}1}\end{bmatrix}\right)\!\mathcal{L}_{p_{1}{\kern-.5pt}\times{\kern-.5pt} p_{1}}\!\left( \!\begin{bmatrix}\widetilde Y^{L}&\!\widetilde D^{L}_{t{\kern-.5pt}-{\kern-.5pt}1}\end{bmatrix}^{\text{T}}\right)^{\text{T}} \! &=&\!\begin{bmatrix} * & 0 & * & 0 & \cdots\\ {\vdots} & {\vdots} & {\vdots} & {\vdots} & \\ * & 0 & * & 0 & \cdots\\ \end{bmatrix}\begin{bmatrix} * &{\cdots} & *\\ 0 &{\cdots} & 0\\ * &{\cdots} & *\\ 0 &{\cdots} & 0\\ {\vdots} & &{\vdots} \\ \end{bmatrix} \\&=&\!\begin{bmatrix} * & * & \cdots\\ {\vdots} & {\vdots} & \\ * & * & \cdots\\ \end{bmatrix}\begin{bmatrix} * &{\cdots} & *\\ * &{\cdots} & *\\ {\vdots} & &{\vdots} \\ \end{bmatrix} \\& = &\! \mathcal{L}_{p_{1}\times p_{2}}\!\left( \begin{bmatrix} Y\\ \!D_{t{\kern-.5pt}-{\kern-.5pt}1}\end{bmatrix}\!\right)\!\mathcal{L}_{p_{1}\!\times\! p_{2}}\!\left( \!\begin{bmatrix} Y^{L}& \!D^{L}_{t{\kern-.5pt}-{\kern-.5pt}1}\end{bmatrix}^{\text{T}}\!\right)^{\text{T}} \! \!. \end{array} $$

Thus, \(\widetilde Q_2=Q_2,\widetilde Q^L_2=Q^L_2,\widetilde Q_{2,b}=Q_{2,b}\), and \(\widetilde Q_3=\begin {bmatrix} Q_3 & 0 \end {bmatrix}, \widetilde Q^L_3=\begin {bmatrix} Q^L_3\\0 \end {bmatrix}\). Therefore,

$$ \begin{array}{@{}rcl@{}} \widetilde W&=& -I_{p_{1}} - \begin{bmatrix} {Q^{L}_{3}} \\ 0 \end{bmatrix}\begin{bmatrix} D_{t-1} & 0 \end{bmatrix}=\begin{bmatrix} -I_{p_{2}}-{Q^{L}_{3}}D_{t-1} & 0\\ 0 & -I_{p_{1}-p_{2}}\\ \end{bmatrix}=\begin{bmatrix} W & \\ & -I_{p_{1}-p_{2}} \end{bmatrix}, \\ \widetilde W\widetilde Y^{L}\widetilde Y\widetilde W&=&\begin{bmatrix} W & \\ & -I_{p_{1}-p_{2}} \end{bmatrix}\begin{bmatrix} Y^{L}\\0 \end{bmatrix}\begin{bmatrix} Y& 0 \end{bmatrix}\begin{bmatrix} W & \\ & -I_{p_{1}-p_{2}} \end{bmatrix} =\begin{bmatrix} WY^{L}YW & \\ & 0 \end{bmatrix}. \end{array} $$

Hence

$$ \begin{array}{@{}rcl@{}} &&{\kern-2.7pc}\mathcal{U}_{p_{1}\times p_{1}}\left( \begin{bmatrix} \widetilde Q_{3}\\0\\ \end{bmatrix}\right)(I_{t}\otimes [\widetilde W+\widetilde W\widetilde Y^{L}\widetilde Y\widetilde W])^{-1}\mathcal{U}_{p_{1}\times p_{1}}\left( \begin{bmatrix} \widetilde {Q^{L}_{3}}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} \\&=&\begin{bmatrix} * & 0 & * & 0 & \cdots\\ {\vdots} & {\vdots} & {\vdots} & {\vdots} & \\ * & 0 & * & 0 & \cdots\\ \end{bmatrix}\begin{bmatrix} * & &&&\\ & -I &&&\\ &&* &&\\ &&& -I &\\ &&&&\ddots\\ \end{bmatrix}\begin{bmatrix} * &{\cdots} & *\\ 0 &{\cdots} & 0\\ * &{\cdots} & *\\ 0 &{\cdots} & 0\\ {\vdots} & &{\vdots} \\ \end{bmatrix} \\&=&\begin{bmatrix} * & * & \cdots\\ {\vdots} & {\vdots} & \\ * & * & \cdots\\ \end{bmatrix}\begin{bmatrix} * &&\\ & *&\\ && {\ddots} \\ \end{bmatrix}\begin{bmatrix} * &{\cdots} & *\\ * &{\cdots} & *\\ {\vdots} & &{\vdots} \\ \end{bmatrix} \\&=& \mathcal{U}_{p_{1}\times p_{2}}\left( \begin{bmatrix} Q_{3}\\0\\ \end{bmatrix}\right)(I_{t}\otimes [ W+ W Y^{L} Y W])^{-1}\mathcal{U}_{p_{1}\times p_{2}}\left( \begin{bmatrix} {Q^{L}_{3}}&0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} . \end{array} $$

Finally consider the case p1 < p2. Complement Y to a p2 × p2 matrix \(\widetilde Y=\begin {bmatrix} Y \\ 0 \end {bmatrix}\) and similarly for \(\widetilde D_{t-1}^{\text {T}}=\begin {bmatrix} * & 0 & * & 0&\cdots \end {bmatrix}\) where \(D_{t-1}^{\text {T}}=\begin {bmatrix} * & * & \cdots \end {bmatrix}\), and \(\widetilde Y^L=\begin {bmatrix} Y^L&0 \end {bmatrix}, \widetilde D^L_{t-1}=\begin {bmatrix} * & 0 & * & 0&\cdots \end {bmatrix}\) where \(D^L_{t-1}=\begin {bmatrix} * & * & \cdots \end {bmatrix}\). To make things clear, two permutations P,Ps are used to make \(P\begin {bmatrix} \widetilde Y\\ \widetilde D_{t-1} \end {bmatrix}=\begin {bmatrix} Y\\ D_{t-1} \\ 0 \end {bmatrix}, P_s\widetilde D_{t-1}=\begin {bmatrix} D_{t-1} \\ 0 \end {bmatrix}\). So \(\begin {bmatrix} \widetilde Y^L & \widetilde D^L_{t-1} \end {bmatrix}P^{\text {T}}=\begin {bmatrix} Y^L & D^L_{t-1} & 0 \end {bmatrix}, \widetilde D^L_{t-1} P_s^{\text {T}}=\begin {bmatrix} D^L_{t-1} & 0 \end {bmatrix}\), and

$$ \begin{array}{@{}rcl@{}} P\mathcal{L}_{p_{2}\times p_{2}}\left( \begin{bmatrix}\widetilde Y\\\widetilde D_{t-1}\end{bmatrix}\right) &=&\begin{bmatrix} \mathcal{L}_{p_{1}\times p_{2}}\left( \begin{bmatrix} Y\\ D_{t-1} \end{bmatrix}\right)\\ 0\\ \end{bmatrix} , \\ \mathcal{L}_{p_{2}\times p_{2}}\left( \begin{bmatrix}\widetilde Y^{L}&\widetilde D^{L}_{t-1}\end{bmatrix}^{\text{T}}\right)^{\text{T}}P^{\text{T}} &=&\begin{bmatrix} \mathcal{L}_{p_{1}\times p_{2}}\left( \begin{bmatrix} Y^{L} & D^{L}_{t-1} \end{bmatrix}^{\text{T}}\right)^{\text{T}}& 0\\ \end{bmatrix} . \end{array} $$

Then we use the result above on the case p1 = p2 to obtain \( \left [\vphantom {\left (\begin {bmatrix}\widetilde Y\\\widetilde D_{t-1}\end {bmatrix}\right )}I_{p_2t}-{\mathscr{L}}_{p_2\times p_2}\right .\) \(\left .\left (\begin {bmatrix}\widetilde Y\\\widetilde D_{t-1}\end {bmatrix}\right ){\mathscr{L}}_{p_2\times p_2}\left (\begin {bmatrix}\widetilde Y^L&\widetilde D^L_{t-1}\end {bmatrix}^{\text {T}}\right )^{\text {T}}\right ]^{-1}\). Note that

$$ \begin{array}{@{}rcl@{}} &&{\kern-2.5pc} P\left[I_{p_{2}t}-\mathcal{L}_{p_{2}\times p_{2}}\left( \begin{bmatrix}\widetilde Y\\\widetilde D_{t-1}\end{bmatrix}\right)\mathcal{L}_{p_{2}\times p_{2}}\left( \begin{bmatrix}\widetilde Y^{L}&\widetilde D^{L}_{t-1}\end{bmatrix}^{\text{T}}\right)^{\text{T}}\right]P^{\text{T}} \\ && =\begin{bmatrix} I_{p_{1}t}-\mathcal{L}_{p_{1}\times p_{2}}\left( \begin{bmatrix}Y\\ D_{t-1}\end{bmatrix}\right)\mathcal{L}_{p_{1}\times p_{2}}\left( \begin{bmatrix}Y^{L}& D^{L}_{t-1}\end{bmatrix}^{\text{T}}\right)^{\text{T}} & \\ & I_{(p_{2}-p_{1})t} \end{bmatrix}. \end{array} $$
(A7)

Thus,

$$ \begin{array}{@{}rcl@{}} P\begin{bmatrix} \widetilde Q_{2}\\ \widetilde Q_{2,b}\\ \end{bmatrix} &=&P\left[I_{p_{2}t}-\mathcal{L}_{p_{2}\times p_{2}}\left( \begin{bmatrix}\widetilde Y\\\widetilde D_{t-1}\end{bmatrix}\right)\mathcal{L}_{p_{2}\times p_{2}}\left( \begin{bmatrix}\widetilde Y^{L}&\widetilde D^{L}_{t-1}\end{bmatrix}^{\text{T}}\right)^{\text{T}}\right]^{-1}P^{\text{T}}P\begin{bmatrix} 0\\ I_{p_{2}}\\ \end{bmatrix} \\&=&\begin{bmatrix} \left[ I_{p_{1}t}-\mathcal{L}_{p_{1}\times p_{2}}\left( \begin{bmatrix}Y\\ D_{t-1}\end{bmatrix}\right)\mathcal{L}_{p_{1}\times p_{2}}\left( \begin{bmatrix}Y^{L}& D^{L}_{t-1}\end{bmatrix}^{\text{T}}\right)^{\text{T}} \right]^{-1} & \\ & I_{(p_{2}-p_{1})t} \end{bmatrix} \begin{bmatrix} 0\\\begin{bmatrix} I_{p_{1}} & 0 \end{bmatrix}\\0\\\begin{bmatrix} 0 & I_{p_{2}-p_{1}} \end{bmatrix} \end{bmatrix} \\&=&\begin{bmatrix} \left[ I_{p_{1}t}-\mathcal{L}_{p_{1}\times p_{2}}\left( \begin{bmatrix}Y\\ D_{t-1}\end{bmatrix}\right)\mathcal{L}_{p_{1}\times p_{2}}\left( \begin{bmatrix}Y^{L}& D^{L}_{t-1}\end{bmatrix}^{\text{T}}\right)^{\text{T}} \right]^{-1}\begin{bmatrix} 0 \\ I_{p_{1}} \end{bmatrix} & 0\\ 0 &\begin{bmatrix} 0 \\ I_{p_{2}-p_{1}} \end{bmatrix} \end{bmatrix} \\& =&\begin{bmatrix} \begin{bmatrix} Q_{2}\\ Q_{2,b} \end{bmatrix} & 0\\ 0 &\begin{bmatrix} 0 \\ I_{p_{2}-p_{1}} \end{bmatrix} \end{bmatrix} , \end{array} $$

and similarly, \(\begin {bmatrix} \widetilde Q^L_2& \widetilde Q_{2,b}\\ \end {bmatrix}P^{\text {T}} =\begin {bmatrix} \begin {bmatrix} Q^L_2 & Q_{2,b} \end {bmatrix} & 0\\ 0 &\begin {bmatrix} 0 & I_{p_2-p_1} \end {bmatrix} \end {bmatrix} \). Therefore, \( \widetilde Q_{2,b}=\begin {bmatrix} Q_{2,b} & 0 \\ 0 & I_{p_2-p_1} \end {bmatrix}\) and

$$ \begin{array}{@{}rcl@{}} &&{}P\mathcal{U}_{p_{2}\times p_{2}}\left( \begin{bmatrix} \widetilde Q_{2}\\ \widetilde Q_{2,b}\\ \end{bmatrix}\right)P^{\text{T}}P(I_{t}\otimes \widetilde Q_{2,b})^{-1}P^{\text{T}}P\mathcal{U}_{p_{2}\times p_{2}}\left( \begin{bmatrix} \widetilde {Q^{L}_{2}}& \widetilde Q_{2,b}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}P^{\text{T}} \\&=&\! \begin{bmatrix} \mathcal{U}_{p_{1}\times p_{1}}\!\left( \begin{bmatrix} Q_{2}\\ Q_{2,b}\\ \end{bmatrix}\right) & 0\\ 0& I_{(p_{2}-p_{1})t} \end{bmatrix}\!\begin{bmatrix} (I_{t}\otimes Q_{2,b})^{-1} & \\ & I_{(p_{2}-p_{1})t} \end{bmatrix}\!\begin{bmatrix} \!\mathcal{U}_{p_{1}\times p_{1}}\!\left( \begin{bmatrix} {Q^{L}_{2}}& Q_{2,b}\\ \end{bmatrix}^{\text{T}}\right) & 0\\ 0& I_{(p_{2}-p_{1})t} \end{bmatrix}^{\text{T}}\!\!\!\!\!\!\!\! \\&=&\! \begin{bmatrix} \mathcal{U}_{p_{1}\times p_{1}}\left( \begin{bmatrix} Q_{2}\\ Q_{2,b}\\ \end{bmatrix}\right)(I_{t}\otimes Q_{2,b})^{-1}\mathcal{U}_{p_{1}\times p_{1}}\left( \begin{bmatrix} {Q^{L}_{2}}& Q_{2,b}\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} & \\ & I_{(p_{2}-p_{1})t} \end{bmatrix} . \end{array} $$

Similarly,

$$ \begin{array}{@{}rcl@{}} P_{s}\widetilde Q_{3} &=&P_{s}\left[I_{p_{2}(t-1)}-\widetilde D_{t-1}\widetilde D^{L}_{t-1}-\widetilde T_{t-1}\widetilde T^{L}_{t-1}\right]^{-1}P_{s}^{\text{T}}P_{s}\widetilde D_{t-1} \\& =&\begin{bmatrix} \left[I_{p_{1}(t-1)}- D_{t-1} D^{L}_{t-1}- T_{t-1} T^{L}_{t-1}\right]^{-1} & \\ & I_{(p_{2}-p_{1})(t-1)} \end{bmatrix}\begin{bmatrix} D_{t-1}\\0 \end{bmatrix} =\begin{bmatrix} Q_{3} \\ 0 \end{bmatrix} , \end{array} $$

and similarly, \( \widetilde Q^L_3P_s^{\text {T}} =\begin {bmatrix} Q^L_3 & 0 \end {bmatrix} , \) and then

$$ \begin{array}{@{}rcl@{}} \widetilde W &=& -I_{p_{2}} - \widetilde{Q}_{3}^{L}P_{s}^{\text{T}}P_{s}\widetilde D_{t-1}=-I_{p_{2}}-{Q_{3}^{L}} D_{t-1}=W, \\ \widetilde W\widetilde Y^{L}\widetilde Y\widetilde W& = & W\begin{bmatrix} Y^{L}&0 \end{bmatrix}\begin{bmatrix} Y\\ 0 \end{bmatrix}W = WY^{L}YW. \end{array} $$

Hence

$$ \begin{array}{@{}rcl@{}} &&{\kern-2.5pc}P\mathcal{U}_{p_{2}\times p_{2}}\left( \begin{bmatrix} \widetilde Q_{3}\\ 0\\ \end{bmatrix}\right)(I_{t}\otimes [\widetilde W+\widetilde W\widetilde Y^{L}\widetilde Y\widetilde W])^{-1}\mathcal{U}_{p_{2}\times p_{2}}\left( \begin{bmatrix} \widetilde {Q^{L}_{3}}& 0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}}P^{\text{T}} \\&=& \begin{bmatrix} \mathcal{U}_{p_{1}\times p_{2}}\left( \begin{bmatrix} Q_{3}\\ 0\\ \end{bmatrix}\right) \\ 0 \end{bmatrix} (I_{t}\otimes [ W+ W Y^{L} Y W])^{-1} \begin{bmatrix} \mathcal{U}_{p_{1}\times p_{2}}\left( \begin{bmatrix} {Q^{L}_{3}}& 0\\ \end{bmatrix}^{\text{T}}\right) \\ 0 \end{bmatrix}^{\text{T}} \\&=& \begin{bmatrix} \mathcal{U}_{p_{1}\times p_{2}}\left( \begin{bmatrix} Q_{3}\\ 0\\ \end{bmatrix}\right)(I_{t}\otimes [ W+ W Y^{L} Y W])^{-1}\mathcal{U}_{p_{1}\times p_{2}}\left( \begin{bmatrix} {Q^{L}_{3}}& 0\\ \end{bmatrix}^{\text{T}}\right)^{\text{T}} & \\ & 0 \end{bmatrix} . \end{array} $$

Finally, Lemma 1 comes out as a corollary.

Proof Proof of Lemma 1

Use Lemma 17 with \(Y=-(Y^L)^{\text {T}}, D_{t-1}=-(D^L_{t-1})^{\text {T}}\). Then we take Q2,b = Q1 to obtain the result. □

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, ZC., Liang, X. The intrinsic Toeplitz structure and its applications in algebraic Riccati equations. Numer Algor 93, 227–267 (2023). https://doi.org/10.1007/s11075-022-01413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01413-9

Keywords

Mathematics Subject Classification (2010)

Navigation