Skip to main content
Log in

A high-order adaptive numerical algorithm for fractional diffusion wave equation on non-uniform meshes

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract 

In this work, our motivation is to design an impressive new numerical approximation on non-uniform grid points for the Caputo fractional derivative in time \({~}^{\mathrm {C}}_{0}\mathcal {D}_{t}^{\alpha }\) with the order α ∈ (1,2). An adaptive high-order stable implicit difference scheme is developed for the time-fractional diffusion wave equations (TFDWEs) by using estimation of order \(\mathcal {O}(N_{t}^{\alpha -5})\) for the Caputo derivative in the time domain on non-uniform mesh and well-known second-order central difference approximation for estimating the spatial derivative on a uniform mesh. The designed algorithm allows one to build adaptive nature where the scheme is adjusted according to the behaviour of α in order to keep the numerical errors very small and converge to the solution very fast as compared to the previously investigated scheme. We rigorously analyze the local truncation errors, unconditional stability of the proposed method, and its convergence of (5 − α)-th order in time and second-order in space for all values of α ∈ (1,2). A reduced order technique is implemented by using moving mesh refinement and assemble with the derived scheme in order to improve the temporal accuracy at several starting time levels. Furthermore, the numerical stability of the derived adaptive scheme is verified by imposing random external noises. Some numerical tests are given to show that the numerical results are consistent with the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Applic. 59(5), 1586–1593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198. Elsevier (1998)

  3. Elliott, R.J., Van Der Hoek, J.: A general fractional white noise theory and applications to finance. Math. Financ. 13(2), 301–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, J., Feng, X.C.: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16(10), 2492–2502 (2007)

    Article  MathSciNet  Google Scholar 

  5. Sejdić, E., Djurović, I., Stanković, L.: Fractional Fourier transform as a signal processing tool: An overview of recent developments. Signal Process. 91(6), 1351–1369 (2011)

    Article  MATH  Google Scholar 

  6. Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Applic. 62(3), 855–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wenchang, T., Wenxiao, P., Mingyu, X.: A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Int. J. Non-Linear Mech. 38(5), 645–650 (2003)

    Article  MATH  Google Scholar 

  8. Vinagre, B., Feliu, V.: Modeling and control of dynamic system using fractional calculus: Application to electrochemical processes and flexible structures. In: Proc. 41st IEEE Conf. Decision and Control, vol. 1, pp. 214–239 (2002)

  9. Tarasov, V.E., Zaslavsky, G.M.: Fractional dynamics of systems with long-range space interaction and temporal memory. Physica A: Stat. Mech. Applic. 383(2), 291–308 (2007)

    Article  Google Scholar 

  10. Luo, A.C., Afraimovich, V.: Long-range interactions, stochasticity and fractional dynamics: dedicated to George M. Zaslavsky (1935—2008). Springer Science & Business Media (2011)

  11. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Article  MATH  Google Scholar 

  12. Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Discrete random walk models for space–time fractional diffusion. Chem. Phys. 284(1–2), 521–541 (2002)

    Article  MATH  Google Scholar 

  13. Hosseini, V.R., Shivanian, E., Chen, W.: Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping. J. Comput. Phys. 312, 307–332 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kazem, S.: Exact solution of some linear fractional differential equations by Laplace transform. Int. J. Nonlin. Sci. 16(1), 3–11 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Saad, K., Al-Shomrani, A.: An application of homotopy analysis transform method for Riccati differential equation of fractional order. J. Fract. Calc. Applic. 7(1), 61–72 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Diff. Equ. Int. J. 26(2), 448–479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177(2), 488–494 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Chen, J., Liu, F., Anh, V.: Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338(2), 1364–1377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mamchuev, M.O.: Solutions of the main boundary value problems for the time-fractional telegraph equation by the Green function method. Fract. Calc. Appl. Anal. 20(1), 190–211 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ray, S.S., Bera, R.: Analytical solution of a fractional diffusion equation by Adomian decomposition method. Appl. Math. Comput. 174(1), 329–336 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Momani, S., Odibat, Z., Erturk, V.S.: Generalized differential transform method for solving a space-and time-fractional diffusion-wave equation. Phys. Lett. A 370(5–6), 379–387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, Y., Luo, Y., Lu, Z.: Analytical solution of the linear fractional differential equation by Adomian decomposition method. J. Comput. Appl. Math. 215(1), 220–229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J., Liu, F., Feng, L., Turner, I.: A novel finite volume method for the Riesz space distributed-order advection–diffusion equation. Appl. Math. Model. 46, 536–553 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zheng, Y., Zhao, Z.: The time discontinuous space-time finite element method for fractional diffusion-wave equation. Appl. Numer. Math. 150, 105–116 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dehghan, M., Abbaszadeh, M.: A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Comput. Math. Applic. 75(8), 2903–2914 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Analysis of two methods based on Galerkin weak form for fractional diffusion-wave: meshless interpolating element free Galerkin (IEFG) and finite element methods. Eng. Anal. Bound. Elem. 64, 205–221 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sweilam, N.H., Khader, M.M., Nagy, A.: Numerical solution of two-sided space-fractional wave equation using finite difference method. J. Comput. Appl. Math. 235(8), 2832–2841 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Abbaszadeh, M., Dehghan, M.: Numerical and analytical investigations for neutral delay fractional damped diffusion-wave equation based on the stabilized interpolating element free Galerkin (IEFG) method. Appl. Numer. Math. 145, 488–506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gao, G.H., Sun, Z.Z.: Two difference schemes for solving the one-dimensional time distributed-order fractional wave equations. Numer. Algor. 74(3), 675–697 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sweilam, N., Ahmed, S., Adel, M.: A simple numerical method for two-dimensional nonlinear fractional anomalous sub-diffusion equations. Mathematical Methods in the Applied Sciences

  32. Dehghan, M., Manafian, J., Saadatmandi, A.: The solution of the linear fractional partial differential equations using the homotopy analysis method. Zeitschrift für Naturforschung-A 65(11), 935 (2010)

    Article  MATH  Google Scholar 

  33. Abbaszadeh, M., Dehghan, M.: An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algor. 75(1), 173–211 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dehghan, M., Abbaszadeh, M.: A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation. Math. Methods Appl. Sci. 41(9), 3476–3494 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shah, K., Akram, M.: Numerical treatment of non-integer order partial differential equations by omitting discretization of data. Comput. Appl. Math. 37(5), 6700–6718 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71 (1), 16–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38(1), A146–A170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228(20), 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Soori, Z., Aminataei, A.: A new approximation to Caputo-type fractional diffusion and advection equations on non-uniform meshes. Appl. Numer. Math. 144, 21–41 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Oldham, K., Spanier, J.: The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier (1974)

  43. Zhang, Y.N., Sun, Z.Z., Liao, H.L.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lynch, V.E., Carreras, B.A., del Castillo-Negrete, D., Ferreira-Mejias, K., Hicks, H.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192(2), 406–421 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Du, R., Yan, Y., Liang, Z.: A high-order scheme to approximate the Caputo fractional derivative and its application to solve the fractional diffusion wave equation. J. Comput. Phys. 376, 1312–1330 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer Math. 56 (1), 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu, Z., Cheng, A., Li, X.: A novel finite difference discrete scheme for the time fractional diffusion-wave equation. Appl. Numer. Math. 134, 17–30 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Maurya, R.K., Devi, V., Srivastava, N., Singh, V.K.: An efficient and stable Lagrangian matrix approach to Abel integral and integro-differential equations. Appl. Math. Comput. 374, 125005 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Šišková, K., Slodička, M.: A source identification problem in a time-fractional wave equation with a dynamical boundary condition. Comput. Math. Applic. 75(12), 4337–4354 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Huang, J., Zhang, J., Arshad, S., Tang, Y.: A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations. Appl. Numer. Math. 159, 159–173 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Editor for taking time to handle the manuscript and two reviewers for carefully reading the manuscript and their constructive comments and suggestions that really improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Kumar Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, R.K., Singh, V.K. A high-order adaptive numerical algorithm for fractional diffusion wave equation on non-uniform meshes. Numer Algor 92, 1905–1950 (2023). https://doi.org/10.1007/s11075-022-01372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01372-1

Keywords

Mathematics Subject Classification (2010)

Navigation