Skip to main content
Log in

Fully numerical Laplace transform methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The role of the Laplace transform in scientific computing has been predominantly that of a semi-numerical tool. That is, typically only the inverse transform is computed numerically, with all steps leading up to that executed by analytical manipulations or table look-up. Here, we consider fully numerical methods, where both forward and inverse transforms are computed numerically. Because the computation of the inverse transform has been studied extensively, this paper focus mainly on the forward transform. Existing methods for computing the forward transform based on exponential sums are considered along with a new method based on the formulas of Weeks. Numerical examples include a nonlinear integral equation of convolution type, a fractional ordinary differential equation, and a partial differential equation with an inhomogeneous boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., Varga, A.: SLICOT—a subroutine library in systems and control theory. In: Applied and Computational Control, Signals, and Circuits, volume 1 of Appl. Comput. Control Signals Circuits, pp 499–539. Boston, Birkhäuser (1999)

  2. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19(1), 17–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beylkin, G., Monzón, L.: Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal. 28(2), 131–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Butcher, J.C.: On the numerical inversion of Laplace and Mellin transforms. In: Conference on Data Processing and Automatic Computing Machines. Salisbury (1957)

  5. Carrier, G.F., Krook, M., Pearson, C.E.: Functions of a complex variable: Theory and Technique. McGraw-Hill Book Co., New York (1966)

    MATH  Google Scholar 

  6. Cohen, A.M.: Numerical methods for Laplace transform inversion, Volume 5 of Numerical Methods and Algorithms. Springer, New York (2007)

    Google Scholar 

  7. Derevianko, N., Plonka, G., Petz, M.: From ESPRIT to ESPIRA: estimation of signal parameters by iterative rational approximation (2022)

  8. Diethelm, K.: The analysis of fractional differential equations, Volume 2004 of Lecture Notes in Mathematics. Springer, Berlin (2010)

    Google Scholar 

  9. Dingfelder, B., Weideman, J.A.C.: An improved Talbot method for numerical Laplace transform inversion. Numer Algorithms 68(1), 167–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.17 of 2017-12-22. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds

  11. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications (2014)

  12. Dubner, H., Abate, J.: Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. J. Assoc Comput. Mach. 15, 115–123 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elliott, D., Tuan, P.D.: Asymptotic estimates of Fourier coefficients. SIAM J. Math Anal. 5, 1–10 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gil, A., Segura, J., Temme, N.M.: Efficient computation of Laguerre polynomials. Comput. Phys. Commun. 210, 124–131 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giunta, G., Laccetti, G., Rizzardi, M.R.: More on the Weeks method for the numerical inversion of the Laplace transform. Numer. Math. 54(2), 193–200 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gottlieb, D., Orszag, S.A.: Numerical analysis of spectral methods: theory and applications. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 26. Society for Industrial and Applied Mathematics, Philadelphia (1977)

    Book  Google Scholar 

  17. Hale, N., Weideman, J.A.C.: Contour integral solution of elliptic PDEs in cylindrical domains. SIAM J. Sci Comput. 37(6), A2630–A2655 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Longman, I.M.: Best rational function approximation for Laplace transform inversion. SIAM J. Math. Anal. 5, 574–580 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luke, Y.L.: The special functions and their approximations. Vol. II Mathematics in Science and Engineering, vol. 53. Academic Press, New York (1969)

    Google Scholar 

  20. Lyness, J.N., Giunta, G.: A modification of the Weeks method for numerical inversion of the Laplace transform. Math Comp. 47(175), 313–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Podlubny, I.: Fractional differential equations, Volume 198 of Mathematics in Science and Engineering. Academic Press, Inc., San Diego (1999)

    Google Scholar 

  22. Potts, D., Tasche, M.: Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra Appl. 439(4), 1024–1039 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Potts, D., Tasche, M., Volkmer, T.: Efficient spectral estimation by MUSIC and ESPRIT with application to sparse FFT. Front. Appl. Math. Stat., 2 (2016)

  24. Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal. 23(2), 269–299 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Spiegel, M.R.: Theory and problems of Laplace transforms. Schaum Publishing Co., New York (1965)

    Google Scholar 

  26. Talbot, A.: The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl. 23(1), 97–120 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Terekhov, A.V.: Generating the Laguerre expansion coefficients by solving a one-dimensional transport equation. Numer. Algorithms 89(1), 303–322 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56(3), 385–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Weeks, W.T.: Numerical inversion of Laplace transforms using Laguerre functions. J. Assoc. Comput. Mach. 13, 419–429 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  30. Weideman, J.A.C.: Algorithms for parameter selection in the Weeks method for inverting the Laplace transform. SIAM J. Sci. Comput. 21(1), 111–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Weideman, J.A.C., Reddy, S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math. Software 26(4), 465–519 (2000)

    Article  MathSciNet  Google Scholar 

  32. Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comp. 76(259), 1341–1356 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xiang, S.: Asymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadrature. J. Math. Anal. Appl. 393(2), 434–444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Annie Cuyt, Volker Mehrmann, Gerlind Plonka, Daniel Potts, and Rina-Marí Weideman generously shared advice and software related to exponential sum approximations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. C. Weideman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: MATLAB code for computing Laguerre coefficients

Appendix: MATLAB code for computing Laguerre coefficients

The following code computes the expansion coefficients (8). It uses Gauss-Laguerre quadrature, the computation of which is done here by a function from Chebfun [11]. The Laguerre polynomials are computed by the well-known three-term recursion [10, sect. 18.9], which is stable in the forward direction. For large n the improved methods of [14] should be considered.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weideman, J.A.C., Fornberg, B. Fully numerical Laplace transform methods. Numer Algor 92, 985–1006 (2023). https://doi.org/10.1007/s11075-022-01368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01368-x

Keywords

Navigation