Skip to main content
Log in

Generalized discrete Lotka-Volterra equation, orthogonal polynomials and generalized epsilon algorithm

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose a generalized discrete Lotka-Volterra equation and explore its connections with symmetric orthogonal polynomials, Hankel determinants and convergence acceleration algorithms. Firstly, we extend the fully discrete Lotka-Volterra equation to a generalized one with a sequence of given constants \(\{u_{0}^{(n)}\}\) and derive its solution in terms of Hankel determinants. Then, it is shown that the discrete equation of motion is transformed into a discrete Riccati system for a discrete Stieltjes function, hence leading to a complete linearization. Besides, we obtain its Lax pair in terms of symmetric orthogonal polynomials by generalizing the Christoffel transformation for the symmetric orthogonal polynomials. Moreover, a generalization of the famous Wynn’s ε-algorithm is also derived via a Miura transformation to the generalized discrete Lotka-Volterra equation. Finally, the numerical effects of this generalized ε-algorithm are discussed by applying to some linearly, logarithmically convergent sequences and some divergent series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. The so-called Christoffel transformation is a nice formula that generates a new class of (bi)OPs with a modified measure \(d\hat \rho\) from a given class of (bi)OPs together with the measure dρ.

  2. Miura transform is originally known as the transformation between the KdV equation and modified KdV equation, which are two famous integrable systems. Nowadays, the term Miura transform has been widely used to indicate a transformation that links certain two integrable systems.

  3. For fixed n, \(H_{k,j}^{(n)}\) are Hankel determinants of a sequence \(\{c_{j}^{(n)}\}\).

References

  1. Aitken, A.: Determinants and Matrices. Oliver and Boyd, Edinburgh (1959)

    MATH  Google Scholar 

  2. Aitken, A.: On Bernoulli’s numerical solution of algebraic equations. Proc. Roy. Soc. Edinburgh. 46, 289–305 (1926)

    MATH  Google Scholar 

  3. A. M. Bloch.: Steepest descent,linear programming and Hamiltonian flows. Contemp. Math. AMS 114, 77–88 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Bogoyavlensky, O.I.: Algebraic constructions of integrable dynamical systems-extensions of the Volterra system. Russ. Math. Surv. 46, 1–64 (1991)

    MathSciNet  Google Scholar 

  5. Borghi, R.: Computational optics through sequence transformations (Chapter One), vol. 61 of Progress in Optics. Academic Press, Amsterdam (2016)

    Google Scholar 

  6. Borghi, R., Weniger, E.J.: Convergence analysis of the summation of the factorially divergent Euler series by padé approximants and the delta transformation. Appl. Numer. Math. 94, 149–178 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Brezinski, C.: Accélération de suites à convergence logarithmique. C. R. Math. Acad. Sci. Paris 273, 727–730 (1971)

    MATH  Google Scholar 

  8. Brezinski, C.: Padé-type approximation and general orthogonal polynomials. Basel, Birkhäuser Verlag (1980)

    MATH  Google Scholar 

  9. Brezinski, C.: A bibliography on continued fractions, Padé approximation, sequence transformation and related subjects. Prensas Universitarias de Zaragoza, Zaragoza (1991)

    Google Scholar 

  10. Brezinski, C.: Biorthogonality and its applications to numerical snalysis. Marcel Dekker, New York (1992)

    MATH  Google Scholar 

  11. Brezinski, C.: Convergence acceleration during the 20th century. J. Comput. Appl. Math. 122, 1–21 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Brezinski, C.: A brief introduction to integrable systems. Int. J. Comput. Sci. Math. 1, 98–106 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Brezinski, C., He, Y., Hu, X.B., Redivo-Zaglia, M., Sun, J.Q.: Multistep ε-algorithm, Shanks’ transformation, and Lotka-Volterra system by Hirota’s method. Math. Comput. 81, 1527–1549 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Brezinski, C., Redivo-Zaglia, M.: Extrapolation methods: theory and practice. North-Holland, Amsterdam (1991)

    MATH  Google Scholar 

  15. Brezinski, C., Redivo-Zaglia, M.: The genesis and early developments of Aitken’s process, Shanks’ transformation, the ε–algorithm, and related fixed point methods. Numer. Algorithms 80, 11–133 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Chang, X.K., Chen, X.M., Hu, X.B., Tam, H.W.: About several classes of bi-orthogonal polynomials and discrete integrable systems. J. Phys. A: Math. Theor. 48, 015204 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Chang, X.K., He, Y., Hu, X.B., Li, S.H.: A new integrable convergence acceleration algorithm for computing Brezinski-Durbin-Redivo-Zaglia’s sequence transformation via pfaffians. Numer Algorithms 78, 87–106 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Chang, X.K., He, Y., Hu, X.B., Li, S.H.: Partial-skew-orthogonal polynomials and related integrable lattices with Pfaffian tau-functions. Commun. Math. Phys. 364, 1069–1119 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Chang, X.K., He, Y., Hu, X.B., Sun, J.Q., Weniger, E.J.: Construction of new generalizations of Wynn’s epsilon and rho algorithm by solving finite difference equations in the transformation order. Numer. Algorithms 83, 593–627 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Chang, X.K., Hu, X.B., Szmigielski, J.: Multipeakons of a two-component modified Camassa-Holm equation and the relation with the finite Kac-van Moerbeke lattice. Adv. Math. 299, 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Chen, X.M., Hu, X.B., Müller-Hoissen, F.: Non-isospectral extension of the Volterra lattice hierarchy, and Hankel determinants. Nonlinearity 31, 4393–4422 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Chu, M.: Linear algebra algorithms as dynamical systems. Acta Numer. 17, 1–86 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Deift, P., Nanda, T., Tomei, C.: Ordinary differential equations and the symmetric eigenvalue problem. SIAM J. Numer. Anal. 20, 1–22 (1983)

    MathSciNet  MATH  Google Scholar 

  24. Dyson, F.J.: Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85, 631–632 (1952)

    MathSciNet  MATH  Google Scholar 

  25. Fukuda, A., Ishiwata, E., Iwasaki, M., Nakamura, Y.: The discrete hungry Lotka–Volterra system and a new algorithm for computing matrix eigenvalues. Inverse Probl. 25, 015007 (2009)

    MathSciNet  MATH  Google Scholar 

  26. He, Y., Hu, X.B., Sun, J.Q., Weniger, E.J.: Convergence acceleration algorithm via an equation related to the lattice Boussinesq equation. SIAM J. Sci. Comput. 33, 1234–1245 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Hietarinta, J., Joshi, N., Nijhoff, F.W.: Discrete systems and integrability. Cambridge texts in applied mathematics cambridge university press (2016)

  28. Hirota, R., Satsuma. J.: A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice. Prog. Theor. Phys. Supp., pp. 64–100 (1976)

  29. Hirota, R., Satsuma, J.: N-soliton solutions of nonlinear network equations describing a Volterra system. J. Phys. Soc. Jpn. 40, 891–900 (1976)

    Google Scholar 

  30. Hirota, R., Tsujimoto, S.: Conserved quantities of a class of nonlinear difference-difference equations. J. Phys. Soc. Jpn. 64(9), 3125–3127 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Hirota, R., Tsujimoto, S., Imai, T.: Difference scheme of soliton equations. In: Christiansen, P.L., Eilbeck, J.C., Parmentier, R.D. (eds.) Future directions of nonlinear dynamics in physical and biological systems. NATO ASI Series (Series B: Physics), vol. 312. Springer, Boston,MA (1993)

  32. Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics cambridge university press (1998)

  33. Iwasaki, M., Nakamura, Y.: On the convergence of a solution of the discrete Lotka-Volterra system. Inverse Probl. 18, 1569 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Iwasaki, M., Nakamura, Y.: An application of the discrete Lotka–Volterra system with variable step-size to singular value computation. Inverse Probl. 20, 553–563 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Kac, M., Van Moerbeke, P.: On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices. Adv. Math. 16, 160–169 (1975)

    MathSciNet  MATH  Google Scholar 

  36. Kajiwara, K., Masuda, T., Noumi, M., Ohta, Y., Yamada, Y.: Determinant formulas for the Toda and discrete Toda equations. Funkc. Ekvacioj-Ser. Int. 44, 291–308 (2001)

    MathSciNet  MATH  Google Scholar 

  37. Minesaki, Y., Nakamura, Y.: The discrete relativistic Toda molecule equation and a Padé approximation algorithm. Numer. Algorithms 27, 219–235 (2001)

    MathSciNet  MATH  Google Scholar 

  38. Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197–220 (1975)

    MathSciNet  MATH  Google Scholar 

  39. Mukaihira, A., Nakamura, Y.: Schur flow for orthogonal polynomials on the unit circle and its integrable discretization. J. Comput. Appl. Math. 139, 75–94 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Papageorgiou, V., Grammaticos, B., Ramani, A.: Integrable lattices and convergence acceleration algorithms. Phys. Lett. A 179, 111–115 (1993)

    MathSciNet  MATH  Google Scholar 

  41. Papageorgiou, V., Grammaticos, B., Ramani, A.: Orthogonal polynomial approach to discrete Lax pairs for initial boundary-value problems of the QD algorithm. Lett. Math. Phys. 34, 91–101 (1995)

    MathSciNet  MATH  Google Scholar 

  42. Peherstorfer, F., Spiridonov, V.P., Zhedanov, A.S.: Toda chain, Stieltjes function, and orthogonal polynomials. Theor. Math. Phys. 151, 505–528 (2007)

    MathSciNet  MATH  Google Scholar 

  43. Shanks, D.: Shanks Non-linear transformations of divergent and slowly convergent sequences. J. Math. and Phys. (Cambridge Mass.) 34, 1–42 (1955)

    MATH  Google Scholar 

  44. Spiridonov, V., Zhedanov, A.: Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials. Methods Appl. Anal 2, 369–398 (1995)

    MathSciNet  MATH  Google Scholar 

  45. Spiridonov, V., Zhedanov, A.: Discrete-time Volterra chain and classical orthogonal polynomials. J. Phys. A: Math. Gen. 30, 8727 (1997)

    MathSciNet  MATH  Google Scholar 

  46. Sun, J.Q., Chang, X.K., He, Y., Hu, X.B.: An extended multistep Shanks transformation and convergence acceleration algorithm with their convergence and stability analysis. Numer Math. 125, 785–809 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Symes, W.: The QR algorithm and scattering for the finite nonperiodic Toda lattice. Phys. D 4, 275–280 (1982)

    MathSciNet  MATH  Google Scholar 

  48. Tsujimoto, S., Nakamura, Y., Iwasaki, M.: The discrete Lotka-Volterra system computes singular values. Inverse Probl. 17(1), 53–58 (2001)

    MathSciNet  MATH  Google Scholar 

  49. Tsujimoto, S., Zhedanov, A.: Toda-Schrödinger, correspondence and orthogonal polynomials. arXiv:1404.2012 (2014)

  50. Weniger, E.J.: Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 10, 189–371 (1989)

    Google Scholar 

  51. Wynn, P.: On a device for computing the em(sn) transformation. Math. Tables Aids Comput. 10, 91–96 (1956)

    MathSciNet  MATH  Google Scholar 

  52. Zakharov, V.E., Musher, S.L., Rubenchik, A.M.: Nonlinear stage of parametric wave excitation in a plasma. Jetp Lett. 19, 249 (1974)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Folkert Müller-Hoissen for his helpful discussions.

Funding

X.M. Chen was Supported by National Natural Science Foundation of China (Grant No. 11901022), Beijing Municipal Natural Science Foundation (Grant No. 1204027, 1212007), and Foundation for Fundamental Research of Beijing University of Technology (Grant No. 0060005463 20501). X.K. Chang was supported in part by the National Natural Science Foundation of China (Grant Nos. 12171461, 11688101, 11731014) and the Youth Innovation Promotion Association CAS. Y. He was supported in part by the National Natural Science Foundation of China (Grant No. 11971473) , Knowledge Innovation Program of Wuhan-Basic Research (Grant No.2022010801010135) and the Youth Innovation Promotion Association CAS. X.B. Hu was supported in part by the National Natural Science Foundation of China (Grant Nos. 11931017, 11871336 and 12071447).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Ke Chang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Professor Claude Brezinski on the occasion of his 80th birthday

Appendix A: Technical details for the main results

Appendix A: Technical details for the main results

This appendix is devoted to providing some linear and bilinear relations which serve for the proofs of the theorems in Sections 24. In Appendix A.1, some notations and auxiliary determinants are introduced. Appendix A.2 contains some linear relations, while Appendix A.3 includes some bilinear relations. Based on these relations, one can prove the main results in Sections 24.

A.1. Notations

For integers k ≥ 1, j,r ≥− 1, s,n ≥ 0, and l = 0, 1, we first define two sets of sequences, \(\{a_{s}^{(n)}\}\) and \(\{d_{r}^{(n)}\}\) satisfying

$$a_{s}^{(n)}=c_{s}^{(n)}-\frac{h\alpha^{(n)}}{\beta^{(n)}}\sum\limits_{i=0}^{s-1}a_{i}^{(n)} c_{s-i}^{(n)},$$

and

$$d_r^{(n)}=c_r^{(n)}-\frac{h\alpha^{(n)}}{\beta^{(n)}}\sum\limits_{i=-1}^{r-1}d_i^{(n)} c_{r-i}^{(n)},$$

where α(n) and β(n) are defined by (3.12). Then, in order to express determinants in this appendix conveniently, we introduce the following vectors,

$$\begin{array}{@{}rcl@{}} &\boldsymbol{A}_{k,s}^{(n)}= \left(\begin{array}{c} a_{s}^{(n)} \\ a_{s+1}^{(n)} \\ {\vdots} \\ a_{s+k-1}^{(n)} \end{array}\right) , \quad \boldsymbol{B}_{k,j}^{(n+1)} = \left(\begin{array}{c} \frac{\beta^{(n)} c_{j}^{(n+1)}}{h}\\ \frac{\beta^{(n)} c_{j+1}^{(n+1)}}{h}+\alpha^{(n)} c_{1}^{(n)} c_{j}^{(n+1)}\\ \vdots\\ \frac{\beta^{(n)} c_{j+k-1}^{(n+1)}}{h}+\alpha^{(n)}{\sum}_{i=1}^{k-1}c_{i}^{(n)} c_{j+k-1-i}^{(n+1)} \end{array}\right),\ \ \end{array}$$
(A.1a)
$$\begin{array}{@{}rcl@{}} & \boldsymbol{C}_{k,j}^{(n)} = \left(\begin{array}{c} c_{j}^{(n)} \\ c_{j+1}^{(n)} \\ {\vdots} \\ c_{j+k-1}^{(n)} \end{array}\right) , \ \ \boldsymbol{D}_{k,j}^{(n)} = \left(\begin{array}{c} d_{j}^{(n)} \\ d_{j+1}^{(n)} \\ {\vdots} \\ d_{j+k-1}^{(n)} \end{array}\right), \ \ \boldsymbol{\xi}_{k,s}^{(n+1)} = \left(\begin{array}{c} {\sum}_{i=1}^{s}c_{i}^{(n)} c_{s-i}^{(n+1)}\\ {\sum}_{i=2}^{s+1}c_{i}^{(n)} c_{s+1-i}^{(n+1)}\\ \vdots\\ {\sum}_{i=k}^{s+k-1}c_{i}^{(n)} c_{s+k-1-i}^{(n+1)} \end{array}\right). \end{array}$$
(A.1b)

with the convention \(\boldsymbol {\xi }_{k,0}^{(n+1)}=\boldsymbol {0}\).

Use these vectors, we define some auxiliary determinants as follows,

$$\begin{array}{@{}rcl@{}} F_{k,j,s}^{(n+1)}&=&|\boldsymbol{A}_{k,s}^{(n)},\boldsymbol{C}_{k,j}^{(n+1)},\ldots,\boldsymbol{C}_{k,j+k-3}^{(n+1)},\boldsymbol{C}_{k,j+k-2}^{(n+1)}|,\\ {\Gamma}_{k,j,r}^{(n+1)}&=&|\boldsymbol{D}_{k,r}^{(n)},\boldsymbol{C}_{k,j}^{(n+1)},\ldots,\boldsymbol{C}_{k,j+k-3}^{(n+1)},\boldsymbol{C}_{k,j+k-2}^{(n+1)}|,\\ E_{k,j,r}^{(n+1)}&=&|\boldsymbol{C}_{k,r}^{(n)},\boldsymbol{B}_{k,j}^{(n+1)},\ldots,\boldsymbol{B}_{k,j+k-3}^{(n+1)},\boldsymbol{B}_{k,j+k-2}^{(n+1)}|,\\ \tilde{E}_{k,s,r}^{(n+1)}&=&|\boldsymbol{B}_{k,r}^{(n+1)},\boldsymbol{B}_{k,s}^{(n+1)},\ldots,\boldsymbol{B}_{k,s+k-3}^{(n+1)},\boldsymbol{B}_{k,s+k-2}^{(n+1)}|,\\ K_{k,j,1}^{(n+1)}&=&\left| \begin{array}{cccccc} 1&-\alpha^{(n)} c_j^{(n+1)}&-\alpha^{(n)} c_{j+1}^{(n+1)}&\ldots&-\alpha^{(n)} c_{j+k-2}^{(n+1)}\\ \boldsymbol{C}_{k-1,1}^{(n)}&\boldsymbol{B}_{k-1,j+1}^{(n+1)}&\boldsymbol{B}_{k-1,j+2}^{(n+1)}&\ldots&\boldsymbol{B}_{k-1,j+k-1}^{(n+1)} \end{array}\right|,\\ G_{2k,l}^{(n+1)}(x)&=&\left| \begin{array}{cccccc} \boldsymbol{C}_{k,l}^{(n)}&\boldsymbol{B}_{k,l}^{(n+1)}&\ldots&\boldsymbol{B}_{k,l+k-2}^{(n+1)}&\boldsymbol{B}_{k,l+k-1}^{(n+1)}\\ 1&y_{l,2}&\ldots&y_{l,2k-2}&y_{l,2k} \end{array}\right|,\\ \tilde{G}_{2k,l}^{(n+1)}(x)&=&\left| \begin{array}{ccccc} \boldsymbol{B}_{k-1,l}^{(n+1)}&\boldsymbol{B}_{k-1,l+1}^{(n+1)}&\ldots&\boldsymbol{B}_{k-1,l+k-1}^{(n+1)}\\ y_{l,2}&y_{l,4}&\ldots&y_{l,2k} \end{array}\right|, \end{array}$$

with the conventions

$$\begin{array}{@{}rcl@{}} F_{0,j,s}^{(n+1)}&=&0,\quad F_{1,j,s}^{(n+1)}=a_{s}^{(n)},\quad {\Gamma}_{0,j,r}^{(n+1)}=0,\quad {\Gamma}_{1,j,r}^{(n+1)}=d_{r}^{(n)}, \end{array}$$
(A.2a)
$$\begin{array}{@{}rcl@{}} E_{1,j,r}^{(n+1)}&=&c_{r}^{(n)},\ \tilde{E}_{0,s,r}^{(n+1)}=1,\ \tilde{E}_{1,s,r}^{(n+1)}=\boldsymbol{B}_{1,r}^{(n+1)}, \end{array}$$
(A.2b)
$$\begin{array}{@{}rcl@{}} K_{1,j,1}^{(n+1)}&=&1,\ G_{0,l}^{(n+1)}(x)=1,\ \tilde{G}_{2,l}^{(n+1)}(x)=y_{l,2}, \end{array}$$
(A.2c)

where

$$y_{l,2k}=(x^2+\frac{1}{h})x^{2k-2}-\alpha^{(n)}\sum\limits_{i=1-l}^{k-1}c_{k-1-i}^{(n+1)}x^{2i}.$$
(A.3)

Using these notations, it is easy to see that the Hankel determinant \(H_{k,j}^{(n)}\) can be expressed in terms of vector \(\boldsymbol {C}_{k,j}^{(n)}\) as follows

$$H_{k,j}^{(n)}=|\boldsymbol{C}_{k,j}^{(n)},\boldsymbol{C}_{k,j+1}^{(n)},\ldots,\boldsymbol{C}_{k,j+k-1}^{(n)}|.$$

Now, let us present the relations among the vectors defined in (A.1). First, we rewrite (2.5) as follows

$$c_j^{(n)}=\frac{\beta^{(n)} c_{j-1}^{(n+1)}}{h}-\frac{c_{j-1}^{(n)}}{h}+\alpha^{(n)}\sum\limits_{i=1}^{j-1}c_i^nc_{j-1-i}^{(n+1)},\qquad j=1,2,3,\ldots.$$
(A.4)

Then, we have the following lemma.

Lemma A.1.1

Assume \(\{c_{j}^{(n)}\}\) defined by the recursion relation (A.4) and (4.6), then

$$\begin{array}{@{}rcl@{}} {\boldsymbol{C}}_{k,0}^{(n)}&=&\frac{h{\boldsymbol{B}}_{k,-1}^{(n+1)}-\boldsymbol{C}_{k,-1}^{(n)}}{h\gamma^{(n)}}, \end{array}$$
(A.5a)
$$\begin{array}{@{}rcl@{}} {\boldsymbol{C}}_{k,j}^{(n)}&=&{\boldsymbol{B}}_{k,j-1}^{(n+1)}+\alpha^{(n)} {\boldsymbol{\xi}}_{k,j-1}^{(n+1)}-\frac{1}{h}{\boldsymbol{C}}_{k,j-1}^{(n)},\quad j=1,2,\ldots, \end{array}$$
(A.5b)

where γ(n) is defined by

$$\gamma^{(n)}=1+\alpha^{(n)} c_{-1}^{(n+1)}.$$

Proof

The relation (A.5b) is obtained directly by applying (A.4) to \(\boldsymbol {C}_{k,j}^{(n)}\). For (A.5a), noting the definition of recursion relation (4.6) for \(c_{0}^{(n)}\), and using (A.4) to \(\boldsymbol {C}_{k,0}^{(n)}\), we first have

$$\gamma^{(n)}\boldsymbol{C}_{k,0}^{(n)}=\alpha^{(n)} c_{-1}^{(n+1)}\boldsymbol{C}_{k,0}^{(n)}+\left(\begin{array}{c} \frac{c_{-1}^{(n+1)}}{h}\\ \frac{\beta^{(n)} c_{0}^{(n+1)}}{h}\\ \frac{\beta^{(n)} c_{1}^{(n+1)}}{h}+\alpha^{(n)} c_1^{(n)} c_0^{(n+1)}\\ \vdots\\ \frac{\beta^{(n)} c_{k-2}^{(n+1)}}{h}+\alpha^{(n)}{\sum}_{i=1}^{k-2}c_{i}^{(n)} c_{k-2-i}^{(n+1)} \end{array}\right)-\frac{1}{h}\boldsymbol{C}_{k,-1}^{(n)}.$$

Then, it is easy to find that the summation of the first two terms in the above right hand of equation identifies with \(\boldsymbol {B}_{k,-1}^{(n+1)}\), by noting its definition in (A.1a). Thus, (A.5a) gets proved. 

A.2. Linear relations

In Lemma A.2.1, we list some important linear relations, which serve to deduce Corollary A.2.2. The proof of Lemma A.2.1 is implemented by performing some row and column transformations on determinants based on the determinant properties. Due to the lengthy details, we place its proof in Appendix A.4.

Lemma A.2.1

Assume \(\{c_{j}^{(n)}\}\) satisfy the recursion relations (2.5) and (4.6), then for integers k ≥ 1, j,r ≥− 1, and l = 0, 1, the following formulae hold

$$\begin{array}{@{}rcl@{}} H_{k+1,-1}^{(n)}&=&\frac{1}{\gamma^{(n)}}E_{k+1,-1,-1}^{(n+1)}, \end{array}$$
(A.6a)
$$\begin{array}{@{}rcl@{}} H_{k,l}^{(n)}&=&E_{k,l,l}^{(n+1)}, \end{array}$$
(A.6b)
$$\begin{array}{@{}rcl@{}} H_{k,2}^{(n)}&=&K_{k+1,0,1}^{(n+1)}-\frac{1}{h}E_{k,2,1}^{(n+1)}, \end{array}$$
(A.6c)
$$\begin{array}{@{}rcl@{}} E_{k,j,-1}^{(n+1)}&=&\Big(\frac{\beta^{(n)}}{h}\Big)^{k-1}{\Gamma}_{k,j,-1}^{(n+1)}, \end{array}$$
(A.6d)
$$\begin{array}{@{}rcl@{}} E_{k,j,0}^{(n+1)}&=&\Big(\frac{\beta^{(n)}}{h}\Big)^{k-1}F_{k,j,0}^{(n+1)}, \end{array}$$
(A.6e)
$$\begin{array}{@{}rcl@{}} E_{k,j,0}^{(n+1)}&=&\Big(\frac{\beta^{(n)}}{h}\Big)^{k-1}{\Gamma}_{k,j,0}^{(n+1)}+\frac{h\alpha^{(n)} c_{-1}^{(n)}}{{\beta^{(n)}}}E_{k,j,1}^{(n+1)}, \end{array}$$
(A.6f)
$$\begin{array}{@{}rcl@{}} E_{k,j,0}^{(n+1)}&=&\frac{h\tilde{E}_{k,j,-1}^{(n+1)}-E_{k,j,-1}^{(n+1)}}{h\gamma^{(n)}}, \end{array}$$
(A.6g)
$$\begin{array}{@{}rcl@{}} E_{k,j,1}^{(n+1)}&=&\frac{(\beta^{(n)})^k}{{h}^{k-1}}F_{k,j,1}^{(n+1)}, \end{array}$$
(A.6h)
$$\begin{array}{@{}rcl@{}} E_{k,j,1}^{(n+1)}&=&\tilde{E}_{k,j,0}^{(n+1)}-\frac{1}{h}E_{k,j,0}^{(n+1)}, \end{array}$$
(A.6i)
$$\begin{array}{@{}rcl@{}} \tilde{E}_{k,r+1,r}^{(n+1)}&=&\Big(\frac{\beta^{(n)}}{h}\Big)^{k}H_{k,r}^{(n+1)}, \end{array}$$
(A.6j)
$$\begin{array}{@{}rcl@{}} K_{k,j,1}^{(n+1)}&=&\frac{(\beta^{(n)})^k}{{h}^{k-1}}H_{k-1,j+1}^{(n+1)}-\frac{\alpha^{(n)}(\beta^{(n)})^{k-1}}{{h}^{k-2}}F_{k,j,0}^{(n+1)}, \end{array}$$
(A.6k)
$$\begin{array}{@{}rcl@{}} G_{2k,l}^{(n+1)}(x)&=&\frac{H_{k,l}^{(n)} P_{2k+l}^{(n)}(x)}{x^l}, \end{array}$$
(A.6l)
$$\begin{array}{@{}rcl@{}} \tilde{G}_{2k,l}^{(n+1)}(x)\\ \quad&=&\frac{(\beta^{(n)})^{k-1}H_{k-1,l}^{(n+1)}\Big((hx^2+1) P_{2k-2+l}^{(n+1)}(x)-hx\alpha^{(n)} Q_{2k-3+l}^{(n+1)}(x)\Big)}{h^kx^l}. \end{array}$$
(A.6m)

Using Lemma A.2.1, it is not hard to derive the following corollary, whose detail is omitted.

Corollary A.2.2

Under the recursion relations (2.5) and (4.6) satisfied by \(\{c_{j}^{(n)}\}\), there hold the following important identities for k = 1, 2,…,

$$\begin{array}{@{}rcl@{}} H_{k+1,-1}^{(n)}&=&\frac{1}{\gamma^{(n)}}\Big(\frac{\beta^{(n)}}{h}\Big)^{k}{\Gamma}_{k+1,-1,-1}^{(n+1)}, \end{array}$$
(A.7a)
$$\begin{array}{@{}rcl@{}} H_{k,0}^{(n)}&=&\frac{(\beta^{(n)})^{k-1}(\beta^{(n)} H_{k,-1}^{(n+1)}-{\Gamma}_{k,0,-1}^{(n+1)})}{h^{k}\gamma^{(n)}}, \end{array}$$
(A.7b)
$$\begin{array}{@{}rcl@{}} H_{k,0}^{(n)}&=&\Big(\frac{\beta^{(n)}}{h}\Big)^{k-1}F_{k,0,0}^{(n+1)}, \end{array}$$
(A.7c)
$$\begin{array}{@{}rcl@{}} H_{k,1}^{(n)}&=&\frac{(\beta^{(n)})^{k}}{h^{k-1}}{F}_{k,1,1}^{(n+1)}, \end{array}$$
(A.7d)
$$\begin{array}{@{}rcl@{}} H_{k,1}^{(n)}&=&\Big(\frac{\beta^{(n)}}{h}\Big)^{k}H_{k,0}^{(n+1)}-\frac{(\beta^{(n)})^{k-1}}{h^{k}}F_{k,1,0}^{(n+1)}, \end{array}$$
(A.7e)
$$\begin{array}{@{}rcl@{}} H_{k,1}^{(n)}&=&\frac{(\beta^{(n)})^{k}(\beta^{(n)} H_{k,0}^{(n+1)}-{\Gamma}_{k,1,0}^{(n+1)})}{h^{k}(\beta^{(n)}+\alpha^{(n)} c_{-1}^{(n)})}, \end{array}$$
(A.7f)
$$\begin{array}{@{}rcl@{}} H_{k,2}^{(n)}&=&\frac{(\beta^{(n)})^{k+1}}{h^{k}}H_{k,1}^{(n+1)}-h\alpha^{(n)} H_{k+1,0}^{(n)}-\Big(\frac{\beta^{(n)}}{h}\Big)^{k}F_{k,2,1}^{(n+1)}. \end{array}$$
(A.7g)

Moreover, it is easy to check that relations (A.7e) and (A.7g) also hold for k = 0, by using the conventions (2.4) and (A.2a).

A.3. Bilinear relations

Now, we apply the Jacobi identity to produce some bilinear relations, which play crucial roles in the main results. For any determinant D, the Jacobi determinant identity [1] reads

$$D\cdot D\left[\begin{array}{cc}i_{1}&i_{2}\\j_{1}&j_{2} \end{array}\right]=D\left[\begin{array}{c}i_{1}\\j_{1} \end{array}\right]\cdot D\left[\begin{array}{c}i_{2}\\j_{2} \end{array}\right]-D\left[\begin{array}{c}i_{1}\\j_{2} \end{array}\right]\cdot D\left[\begin{array}{c}i_{2}\\j_{1} \end{array}\right] ,$$
(A.8)

where

$$D\left[\begin{array}{cccc}i_{1}&i_{2}&\cdots&i_{k}\\j_{1}&j_{2}&\cdots&j_{k} \end{array}\right] , \quad i_{1}<i_{2}<\cdots<i_{k} , \quad j_{1}<j_{2}<\cdots<j_{k} ,$$

denotes the determinant obtained from D by removing the rows at positions i1,i2,…,ik, and the columns at positions j1,j2,…,jk, in the respective matrix.

Lemma A.3.1

For k = 0, 1, 2,…, and j = 0, 1, the following bilinear relations hold,

$$\begin{array}{@{}rcl@{}} &&F_{k+2,0,0}^{(n+1)}H_{k,1}^{(n+1)}-F_{k+1,0,0}^{(n+1)}H_{k+1,1}^{(n+1)}+F_{k+1,1,1}^{(n+1)}H_{k+1,0}^{(n+1)}=0, \end{array}$$
(A.9a)
$$\begin{array}{@{}rcl@{}} &&F_{k+1,1,0}^{(n+1)}H_{k,0}^{(n+1)}-H_{k+1,0}^{(n+1)}F_{k,1,0}^{(n+1)}-F_{k+1,0,0}^{(n+1)}H_{k,1}^{(n+1)}=0, \end{array}$$
(A.9b)
$$\begin{array}{@{}rcl@{}} &&H_{k,1}^{(n+1)}F_{k,1,0}^{(n+1)}-F_{k,2,1}^{(n+1)}H_{k,0}^{(n+1)}-F_{k+1,0,0}^{(n+1)}H_{k-1,2}^{(n+1)}=0, \end{array}$$
(A.9c)
$$\begin{array}{@{}rcl@{}} &&F_{k+1,1,0}^{(n+1)}H_{k,1}^{(n+1)}-H_{k+1,0}^{(n+1)}F_{k,2,1}^{(n+1)}-F_{k+1,0,0}^{(n+1)}H_{k,2}^{(n+1)}=0, \end{array}$$
(A.9d)
$$\begin{array}{@{}rcl@{}} &&{\Gamma}_{k+2,-1,-1}^{(n+1)}H_{k,1}^{(n+1)}-H_{k+1,0}^{(n+1)}{\Gamma}_{k+1,0,-1}^{(n+1)}+{\Gamma}_{k+1,1,0}^{(n+1)}H_{k+1,-1}^{(n+1)}=0, \end{array}$$
(A.9e)
$$\begin{array}{@{}rcl@{}} &&{\Gamma}_{k+1,0,-1}^{(n+1)}H_{k,0}^{(n+1)}-H_{k+1,-1}^{(n+1)}{\Gamma}_{k,1,0}^{(n+1)}-{\Gamma}_{k+1,-1,-1}^{(n+1)}H_{k,1}^{(n+1)}=0, \end{array}$$
(A.9f)
$$\begin{array}{@{}rcl@{}} &&G_{2k+2,j}^{(n+1)}(x)\tilde{E}_{k,j+1j}^{(n+1)}-\tilde{G}_{2k+2,j}^{(n+1)}(x)E_{k+1,j,j}^{(n+1)}+G_{2k,j}^{(n+1)}(x)\tilde{E}_{k+1,j+1,j}^{(n+1)}=0. \end{array}$$
(A.9g)

Proof

For k = 0, all these equations are easily checked. For k ≥ 1, (A.9a) is obtained from the Jacobi identity (A.8) with \(D=F_{k+2,0,0}^{(n+1)}\), and noticing

$$\begin{array}{@{}rcl@{}} && D\left[\begin{array}{cc}1&k+2\\1&k+2 \end{array}\right]=H_{k,1}^{(n+1)}, \quad D\left[\begin{array}{c}1\\1 \end{array}\right]=H_{k+1,1}^{(n+1)}, \\ && D\left[\begin{array}{c}k+2\\k+2 \end{array}\right]=F_{k+1,0,0}^{(n+1)}, \quad D\left[\begin{array}{c}1\\k+2 \end{array}\right]=F_{k+1,1,1}^{(n+1)}, \quad D\left[\begin{array}{c}k+2\\1 \end{array}\right]=H_{k+1,0}^{(n+1)} . \end{array}$$

(A.9b) follows from the Jacobi identity with

$$D=\left| \begin{array}{cccccc} a_{0}^{(n)}&c_{0}^{(n+1)}&\cdots&c_{k-1}^{(n+1)}&c_{k}^{(n+1)}\\ a_{1}^{(n)}&c_{1}^{(n+1)}&\cdots&c_{k}^{(n+1)}&c_{k+1}^{(n+1)}\\ \vdots&\vdots&{\ddots} &\vdots&\vdots\\ a_{k}^{(n)}&c_{k}^{(n+1)}&\cdots&c_{2k-1}^{(n+1)}&c_{2k}^{(n+1)}\\ 0&0&\cdots&0&1 \end{array}\right|=F_{k+1,0,0}^{(n+1)},$$

and

$$\begin{array}{@{}rcl@{}} && D\left[\begin{array}{cc}k+1&k+2\\1&2 \end{array}\right]=H_{k,1}^{(n+1)}, \quad D\left[\begin{array}{c}k+1\\1 \end{array}\right]=H_{k,0}^{(n+1)}, \\ && D\left[\begin{array}{c}k+2\\2 \end{array}\right]=F_{k+1,1,0}^{(n+1)}, \quad D\left[\begin{array}{c}k+1\\2 \end{array}\right]=F_{k,1,0}^{(n+1)}, \quad D\left[\begin{array}{c}k+2\\1 \end{array}\right]=H_{k+1,0}^{(n+1)} . \end{array}$$

(A.9c) is derived by employing the Jacobi identity with

$$D=\left| \begin{array}{ccccccc} 1&1&1&0&\cdots&0\\ 0&a_{0}^{(n)}&c_{0}^{(n+1)}&c_{1}^{(n+1)}&\cdots&c_{k-1}^{(n+1)}\\ 0&a_{1}^{(n)}&c_{1}^{(n+1)}&c_{2}^{(n+1)}&\cdots&c_{k}^{(n+1)}\\ \vdots&\vdots&\vdots&{\ddots} &\vdots\\ 0&a_{k}^{(n)}&c_{k}^{(n+1)}&c_{k+1}^{(n+1)}&\cdots&c_{2k-1}^{(n+1)} \end{array}\right|=F_{k+1,0,0}^{(n+1)},$$

and

$$\begin{array}{@{}rcl@{}} && D\left[\begin{array}{cc}2&k+2\\1&2 \end{array}\right]=H_{k-1,2}^{(n+1)}, \quad D\left[\begin{array}{c}k+2\\2 \end{array}\right]=H_{k,0}^{(n+1)}, \quad D\left[\begin{array}{c}2\\2 \end{array}\right]=H_{k,1}^{(n+1)}, \\ && D\left[\begin{array}{c}2\\1 \end{array}\right]=\left| \begin{array}{cccccc} 1&1&0&\cdots&0\\ a_{1}^{(n)}&c_{1}^{(n+1)}&c_{2}^{(n+1)}&\cdots&c_{k}^{(n+1)}\\ \vdots&\vdots&{\ddots} &\vdots\\ a_{k}^{(n)}&c_{k}^{(n+1)}&c_{k+1}^{(n+1)}&\cdots&c_{2k-1}^{(n+1)} \end{array}\right|=H_{k,1}^{(n+1)}-F_{k,2,1}^{(n+1)}, \\ && D\left[\begin{array}{c}k+2\\1 \end{array}\right]=\left| \begin{array}{cccccc} 1&1&0&\cdots&0\\ a_{0}^{(n)}&c_{0}^{(n+1)}&c_{1}^{(n+1)}&\cdots&c_{k-1}^{(n+1)}\\ \vdots&\vdots&{\ddots} &\vdots\\ a_{k-1}^{(n)}&c_{k-1}^{(n+1)}&c_{k}^{(n+1)}&\cdots&c_{2k-2}^{(n+1)} \end{array}\right|=H_{k,0}^{(n+1)}-F_{k,1,0}^{(n+1)}, \end{array}$$

where we subtract the first columns of the determinants from the second ones in the calculations of \(D\left [\begin {array}{c}2\\1 \end {array}\right ]\) and \(D\left [\begin {array}{c}k+2\\1 \end {array}\right ]\), and use the determinant property.

To prove (A.9d), we apply the Jacobi identity to

$$D=\left| \begin{array}{ccccccc} 0&0&0&\cdots&0&1\\ a_{0}^{(n)}&c_{0}^{(n+1)}&c_{1}^{(n+1)}&\cdots&c_{k-1}^{(n+1)}&c_{k}^{(n+1)}\\ a_{1}^{(n)}&c_{1}^{(n+1)}&c_{2}^{(n+1)}&\cdots&c_{k}^{(n+1)}&c_{k+1}^{(n+1)}\\ \vdots&\vdots&\vdots&{\ddots} &\vdots&\vdots\\ a_{k}^{(n)}&c_{k}^{(n+1)}&c_{k+1}^{(n+1)}&\cdots&c_{2k-1}^{(n+1)}&c_{2k}^{(n+1)} \end{array}\right|=(-1)^{k+3}F_{k+1,0,0}^{(n+1)},$$

with

$$\begin{array}{@{}rcl@{}} && D\left[\begin{array}{cc}1&2\\1&2 \end{array}\right]=H_{k,2}^{(n+1)}, \quad D\left[\begin{array}{c}1\\1 \end{array}\right]=H_{k+1,0}^{(n+1)}, \quad D\left[\begin{array}{c}2\\2 \end{array}\right]=(-1)^{k+2}F_{k,2,1}^{(n+1)},\\ && D\left[\begin{array}{c}1\\2 \end{array}\right]=F_{k+1,1,0}^{(n+1)}, \quad D\left[\begin{array}{c}2\\1 \end{array}\right]=(-1)^{k+2}H_{k,1}^{(n+1)} . \end{array}$$

(A.9e) is obtained from the Jacobi identity with \(D={\Gamma }_{k+2,-1,-1}^{(n+1)}\), and

$$\begin{array}{@{}rcl@{}} && D\left[\begin{array}{cc}1&k+2\\1&2 \end{array}\right]=H_{k,1}^{(n+1)}, \quad D\left[\begin{array}{c}1\\1 \end{array}\right]=H_{k+1,0}^{(n+1)}, \\ && D\left[\begin{array}{c}k+2\\2 \end{array}\right]={\Gamma}_{k+1,0,-1}^{(n+1)}, \quad D\left[\begin{array}{c}1\\2 \end{array}\right]={\Gamma}_{k+1,1,0}^{(n+1)}, \quad D\left[\begin{array}{c}k+2\\1 \end{array}\right]=H_{k+1,-1}^{(n+1)} . \end{array}$$

(A.9f) is proved by applying the Jacobi identity to

$$D=\left| \begin{array}{ccccccc} 0&1&0&\cdots&0&0\\ d_{-1}^{(n)}&c_{-1}^{(n+1)}&c_{0}^{(n+1)}&\cdots&c_{k-2}^{(n+1)}&c_{k-1}^{(n+1)}\\ d_{0}^{(n)}&c_{0}^{(n+1)}&c_{1}^{(n+1)}&\cdots&c_{k-1}^{(n+1)}&c_{k}^{(n+1)}\\ \vdots&\vdots&\vdots&{\ddots} &\vdots&\vdots\\ d_{k-1}^{(n)}&c_{k-1}^{(n+1)}&c_{k}^{(n+1)}&\cdots&c_{2k-2}^{(n+1)}&c_{2k-1}^{(n+1)} \end{array}\right|=-{\Gamma}_{k+1,0,-1}^{(n+1)},$$

with

$$\begin{array}{@{}rcl@{}} && D\left[\begin{array}{cc}k+1&k+2\\1&k+2 \end{array}\right]=\tilde{E}_{k,j+1,j}^{(n+1)}, \quad D\left[\begin{array}{c}k+1\\1 \end{array}\right]=\tilde{G}_{2k+2,j}^{(n+1)}(x),\quad D\left[\begin{array}{c}k+2\\k+2 \end{array}\right]=E_{k+1,j,j}^{(n+1)}, \\ && D\left[\begin{array}{c}k+1\\k+2 \end{array}\right]=G_{2k,j}^{(n+1)}(x), \quad \quad D\left[\begin{array}{c}k+2\\1 \end{array}\right]=\tilde{E}_{k+1,j+1,j}^{(n+1)}. \end{array}$$

Corollary A.3.2

If we let

$$\tau_{2k}^{(n)}=H_{k,0}^{(n)},\qquad \tau_{2k+1}^{(n)}=H_{k,1}^{(n)}, \qquad k,n=0,1,\ldots,$$

with the elements of \(H_{k,j}^{(n)}\) satisfying (2.5) as well as arbitrary constants \(c_{0}^{(n)}\neq 0\), then \(\tau _{k}^{(n)}\) satisfy the bilinear relations

$$\beta^{(n)}\tau_{k+2}^{(n+1)}\tau_{k+1}^{(n)}-\tau_{k+2}^{(n)}\tau_{k+1}^{(n+1)}-h \tau_{k+3}^{(n)}\tau_{k}^{(n+1)}=0,\qquad k,n=0,1,\ldots.$$
(A.10)

Proof

We prove (A.10) with respect to its odd and even parts, respectively.

For k = 2j + 1, j = 0, 1, 2,…, the relation (A.10) can be obtained from the identity (A.9a) and eliminating \(F_{k+2,0,0}^{(n+1)},~F_{k+1,0,0}^{(n+1)}\) and \(F_{k+1,1,1}^{(n+1)}\) via the relations (A.7c) and (A.7d) respectively.

For k = 2j, j = 0, 1, 2,…, the (A.10) immediately follows from the identities (A.9b) and eliminating \(F_{k+1,0,0}^{(n+1)}\), and \(F_{k,1,0}^{(n+1)},~F_{k+1,1,0}^{(n+1)}\) via the relations (A.7c) and (A.7e) respectively. 

Corollary A.3.3

For k = 0, 1, 2,…, the Hankel determinants \(H_{k,j}^{(n)}\) with the elements restricted by (2.5) and (4.6) satisfy the following bilinear relations

$$\begin{array}{@{}rcl@{}} &&\mu^{(n)} H_{k+1,1}^{(n)} H_{k+1,-1}^{(n+1)}- \beta^{(n)} H_{k+1,0}^{(n+1)} H_{k+1,0}^{(n)}-H_{k+2,-1}^{(n)} H_{k,1}^{(n+1)}=0, \end{array}$$
(A.11a)
$$\begin{array}{@{}rcl@{}} &&\mu^{(n)} H_{k+1,-1}^{(n+1)} H_{k,1}^{(n)}- H_{k+1,-1}^{(n)} H_{k,1}^{(n+1)}-h H_{k+1,0}^{(n)} H_{k,0}^{(n+1)}=0, \end{array}$$
(A.11b)
$$\begin{array}{@{}rcl@{}} &&H_{k,2}^{(n)} H_{k,0}^{(n+1)}- \beta^{(n)} H_{k,1}^{(n+1)} H_{k,1}^{(n)}-H_{k+1,0}^{(n)}H_{k-1,2}^{(n+1)}\\ &&\quad+h\alpha^{(n)} H_{k,0}^{(n+1)} H_{k+1,0}^{(n)}=0, \end{array}$$
(A.11c)
$$\begin{array}{@{}rcl@{}} &&H_{k+1,0}^{(n+1)} H_{k,2}^{(n)}-H_{k+1,0}^{(n)} H_{k,2}^{(n+1)}- h H_{k+1,1}^{(n)} H_{k,1}^{(n+1)}\\ &&\quad+h\alpha^{(n)} H_{k+1,0}^{(n+1)} H_{k+1,0}^{(n)}=0, \end{array}$$
(A.11d)

where

$$\alpha^{(n)}=\frac{u_0^{(n)}}{c_0^{(n)}},\quad \beta^{(n)}=1+hu_0^{(n)} ,\quad \mu^{(n)}=\frac{\beta^{(n)}+\alpha^{(n)} c_{-1}^{(n)}}{1+\alpha^{(n)} c_{-1}^{(n+1)}}.$$

Proof

The proof can be achieved by employing the determinant relations given in Lemma A.3.1 and linear relations of determinants presented in Corollary A.2.2.

In particular, (A.11a) and (A.11b) are direct consequences of applying the relations (A.9e) and (A.9f) and replacing \({\Gamma }_{k+1,-1,-1}^{(n+1)},~{\Gamma }_{k,0,-1}^{(n+1)},~{\Gamma }_{k,1,0}^{(n+1)},\) in terms of \(H_{k,j}^{(n)}\) via (A.7a), (A.7b) and (A.7f).

Similarly, (A.11c) and (A.11d) can be obtained by the bilinear relations (A.9c), (A.9d) and replacing \(F_{k+1,0,0}^{(n+1)},~F_{k,1,0}^{(n+1)},~F_{k,2,1}^{(n+1)}\) in (A.9c) and (A.9d) via (A.7c), (A.7e) and (A.7g). 

A.4. Proof of Lemma A.2.1

For k = 1, all these relations (A.6a)–(A.6m) can be easily confirmed. We are going to prove that these relations also hold for k ≥ 2.

First of all, with the help of determinant properties, (A.6g) and (A.6i) can be easily checked by substituting (A.5a) and (A.5b) into the first column of \(E_{k,j,0}^{(n+1)}\) and \(E_{k,j,1}^{(n+1)}\), respectively, where the convention \(\boldsymbol {\xi }_{k,0}^{(n+1)}=\boldsymbol {0}\) is used in the proof of (A.6i).

For the remaining relations, we will prove them by performing row or column transformation to a certain determinant and using the recursion relations (A.4) and (4.6) for \(\{c_{j}^{(n)}\}\).

(1) Column transformation.

The proofs of (A.6a)–(A.6c) and (A.6l) are conducted by performing a series of column transformations on determinants.

We first consider (A.6b). To begin with, we deal with the last column of \(H_{k,l}^{(n)}\) by substituting the relation (A.5b) into it, which yields

$$H_{k,l}^{(n)}=|\boldsymbol{C}_{k,l}^{(n)},\boldsymbol{C}_{k,l+1}^{(n)},\ldots,\boldsymbol{C}_{k,l+k-2}^{(n)},(\boldsymbol{B}_{k,l+k-2}^{(n+1)}+\alpha^{(n)} \boldsymbol{\xi}_{k,l+k-2}^{(n+1)}-\frac{1}{h}\boldsymbol{C}_{k,l+k-2}^{(n)})|.$$

Now, we perform some column transformations in order to eliminate the appeared vector \(\alpha ^{(n)} \boldsymbol {\xi }_{k,l+k-2}^{(n+1)}\) and \(\boldsymbol {C}_{k,l+k-2}^{(n)}/h\). Concretely, we add the (k − 1)-th column of \(H_{k,l}^{(n)}\) multiplied by 1/h to the k-th column, then \(\boldsymbol {C}_{k,l+k-2}^{(n)}/h\) is eliminated. Next, noticing l = 0, 1, adding the i-th column multiplied by \(-\alpha ^{(n)} c_{k-1-i}^{(n+1)}\) to the k-th column for i = (2 − l), (3 − l),…, (k − 1), it is not hard to check that \(\alpha ^{(n)} \boldsymbol {\xi }_{k,l+k-2}^{(n+1)}\) also disappears.

Then, we dispose the (k − 1)-th, (k − 2)-th, …, 2nd columns of \(H_{k,l}^{(n)}\), successively. For each of these columns, after replacing the column vector \(\boldsymbol {C}_{k,j}^{(n)}\) by (A.5b), we conduct similar column operations in order to eliminate the appeared vector \(\alpha ^{(n)} \boldsymbol {\xi }_{k,j-1}^{(n+1)}\) and \(\boldsymbol {C}_{k,j-1}^{(n)}/h\) in the corresponding column. Finally, it leads to

$$H_{k,l}^{(n)}=|\boldsymbol{C}_{k,l}^{(n)},\boldsymbol{B}_{k,l}^{(n+1)},\ldots,\boldsymbol{B}_{k,l+k-3}^{(n+1)},\boldsymbol{B}_{k,l+k-2}^{(n+1)}|,$$

which gives (A.6b).

Now, we turn to prove (A.6a). Based on the above calculations, we see that

$$H_{k+1,-1}^{(n)}=|\boldsymbol{C}_{k+1,-1}^{(n)},\boldsymbol{C}_{k+1,0}^{(n)},\boldsymbol{B}_{k+1,0}^{(n+1)},\ldots,\boldsymbol{B}_{k+1,k-3}^{(n+1)},\boldsymbol{B}_{k+1,k-2}^{(n+1)}|.$$

Then using (A.5a) and adding the first column multiplied by 1/(hγ(n)) to the second one, (A.6a) is immediately derived by eliminating \(\boldsymbol {C}_{k+1,-1}^{(n)}/(h\gamma ^{(n)})\).

To prove (A.6c), we first rewrite the determinant as

$$H_{k,2}^{(n)}=\left| \begin{array}{cccccc} 1&0&0&\ldots&0\\ \boldsymbol{C}_{k,1}^{(n)}&\boldsymbol{C}_{k,2}^{(n+1)}&\boldsymbol{C}_{k,3}^{(n+1)}&\ldots&\boldsymbol{C}_{k,k+1}^{(n+1)} \end{array}\right|.$$

By following the similar column operations to the proof of (A.6b), we obtain

$$\begin{array}{@{}rcl@{}} H_{k,2}^{(n)}&=&\left| \begin{array}{cccccc} 1&\frac{1}{h}-\alpha^{(n)} c_0^{(n+1)}&-\alpha^{(n)} c_1^{(n+1)}&\ldots&-\alpha^{(n)} c_{k-1}^{(n+1)}\\ \boldsymbol{C}_{k,1}^{(n)}&\boldsymbol{B}_{k,1}^{(n+1)}&\boldsymbol{B}_{k,2}^{(n+1)}&\ldots&\boldsymbol{B}_{k,k}^{(n+1)} \end{array}\right|\\ &=&\left| \begin{array}{cccccc} 1&-\alpha^{(n)} c_0^{(n+1)}&-\alpha^{(n)} c_1^{(n+1)}&\ldots&-\alpha^{(n)} c_{k-1}^{(n+1)}\\ \boldsymbol{C}_{k,1}^{(n)}&\boldsymbol{B}_{k,1}^{(n+1)}&\boldsymbol{B}_{k,2}^{(n+1)}&\ldots&\boldsymbol{B}_{k,k}^{(n+1)} \end{array}\right|\\ &&+\left| \begin{array}{cccccc} 1&\frac{1}{h}&-\alpha^{(n)} c_1^{(n+1)}&\ldots&-\alpha^{(n)} c_{k-1}^{(n+1)}\\ \boldsymbol{C}_{k,1}^{(n)}&0&\boldsymbol{B}_{k,2}^{(n+1)}&\ldots&\boldsymbol{B}_{k,k}^{(n+1)} \end{array}\right|, \end{array}$$

which obviously leads to (A.6c).

Now, we proceed to prove (A.6l). Noticing first the determinant expression (3.1) of \(P_{k}^{(n)}(x)\), it is easy to see that

$$\mathcal{H}_{2k,l}^{(n)}(x)=\frac{H_{k,l}^{(n)}P_{2k+l}^{(n)}(x)}{x^l},\qquad l=0,1.$$

Thus, to prove (A.6l), we only need to prove \({\mathscr{H}}_{2k,l}^{(n)}(x)=G_{2k,l}^{(n+1)}(x)\). This can be proved by performing some column transformations to \({\mathscr{H}}_{2k,l}^{(n)}(x)\) in a similar way to prove (A.6b). We omit the details.

(2) Row transformation.

The strategy to prove (A.6d)-(A.6f), (A.6h), (A.6j)-(A.6m) is based on a series of row transformations performed on determinants. The crucial observation is that, the column vectors with \(\boldsymbol {B}_{k,j}^{(n+1)}\) can be converted to \(\beta ^{(n)}\boldsymbol {C}_{k,j}^{(n+1)}/h\) after performing appropriate row transformations so that the summation term of \(\boldsymbol {B}_{k,j}^{(n+1)}\) is eliminated.

Moreover, it should be noted that, since the determinants \(\tilde {E}_{k,r+1,r}^{(n+1)},~E_{k,j,r}^{(n+1)},~K_{k,j,1}^{(n+1)}\), and \(\tilde {G}_{2k,l}^{(n+1)}(x)\) have the majority columns in common in terms of \(\boldsymbol {B}_{k,j}^{(n+1)}\), we will conduct the same row operations to transform them. In order to illustrate these consistent row transformations performed on determinants uniformly and clearly, we now take the following determinant as an example.

Noting that the types of the columns of the determinants in question mainly involve vectors \(\boldsymbol {C}_{k,s}^{(n)},~\boldsymbol {B}_{k,j}^{(n+1)}\) with s = − 1, 0, 1 and j ≥− 1, we set

$$M_{k+2,j,-1}^{(n)}=|\boldsymbol{C}_{k+2,-1}^{(n)},\boldsymbol{C}_{k+2,0}^{(n)},\boldsymbol{B}_{k+2,j}^{(n+1)},\ldots,\boldsymbol{B}_{k+2,j+k-2}^{(n+1)},\boldsymbol{B}_{k+2,j+k-1}^{(n+1)}|,\qquad j=-1,0,1,\ldots.$$

The row transformations will be conducted on \(M_{k+2,j,-1}^{(n)}\) from the second row until to the last row, successively. More precisely, for fixed p = 2, 3,…,k + 2, we add the i-th row multiplied by \(-h\alpha ^{(n)} c_{p-i}^{(n)}/\beta ^{(n)}\) with i = 1, 2, 3,…,p − 1 to the p-th row of \(M_{k+2,j,-1}^{(n)}\), which leads to

$$M_{k+2,j,-1}^{(n)}=\left| \begin{array}{cccccc} d_{-1}^{(n)}&a_0^{(n)}&\frac{\beta^{(n)} c_j^{(n+1)}}{h}&\cdots&\frac{\beta^{(n)} c_{j+k-1}^{(n+1)}}{h}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ d_{p-2}^{(n)}&a_{p-1}^{(n)}&\frac{\beta^{(n)} c_{j+p-1}^{(n+1)}}{h}&\cdots&\frac{\beta^{(n)} c_{j+p+k-2}^{(n+1)}}{h}\\ c_{p-1}^{(n)}&c_{p}^{(n)}&\frac{\beta^{(n)} c_{j+p}^{(n+1)}}{h}+\alpha^{(n)}{\sum}_{i=1}^{p}c_{i}^{(n)} c_{j+p-i}^{(n+1)}&\cdots&\frac{\beta^{(n)} c_{j+p+k-1}^{(n+1)}}{h}+\alpha^{(n)}{\sum}_{i=1}^{p}c_{i}^{(n)} c_{j+p+k-1-i}^{(n+1)}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ c_{k}^{(n)}&c_{k+1}^{(n)}&\frac{\beta^{(n)} c_{j+k+1}^{(n+1)}}{h}+\alpha^{(n)}{\sum}_{i=1}^{k+1}c_{i}^{(n)} c_{j+k+1-i}^{(n+1)}&\cdots&\frac{\beta^{(n)} c_{j+2k}^{(n+1)}}{h}+\alpha^{(n)}{\sum}_{i=1}^{k+1}c_{i}^{(n)} c_{j+2k-i}^{(n+1)} \end{array}\right|.$$

Obviously, for p = k + 2, we have

$$M_{k+2,j,-1}^{(n)}=\Big(\frac{\beta^{(n)}}{h}\Big)^{k}|\boldsymbol{D}_{k+2,-1}^{(n)},\boldsymbol{A}_{k+2,0}^{(n)},\boldsymbol{C}_{k+2,j}^{(n+1)},\ldots,\boldsymbol{C}_{k+2,j+k-1}^{(n+1)}|.$$
(A.5)

Then, (A.6d), (A.6e) and (A.6j) follow immediately since the involved columns of the determinants \(E_{k,j,-1}^{(n+1)},~E_{k,j,0}^{(n+1)}\) and \(\tilde {E}_{k,r+1,r}^{(n+1)}\), are only part of the determinant \(M_{k+2,j,-1}^{(n)}\).

In order to prove the relations (A.6f), (A.6h) and (A.6k), we first conduct equivalent deformations on the determinants \(E_{k,j,0}^{(n+1)}\), \(E_{k,j,1}^{(n+1)}\) and \(K_{k,0,1}^{(n+1)}\), before performing row transformations.

Note that

$$1-\frac{h u_0^{(n)}}{\beta^{(n)}}=\frac{1}{\beta^{(n)}},$$

and

$$\begin{array}{@{}rcl@{}} \boldsymbol{C}_{k,0}^{(n)}&=&(\boldsymbol{C}_{k,0}^{(n)}-\frac{h\alpha^{(n)} d_{-1}^{(n)}}{\beta^{(n)}}\boldsymbol{C}_{k,1}^{(n)})+\frac{h\alpha^{(n)} d_{-1}^{(n)}}{\beta^{(n)}}\boldsymbol{C}_{k,1}^{(n)},\\ \boldsymbol{C}_{k,1}^{(n)}&=&\beta^{(n)}(1-\frac{h u_0^{(n)}}{\beta^{(n)}})\boldsymbol{C}_{k,1}^{(n)}, \end{array}$$

from which, we immediately have

$$\begin{array}{@{}rcl@{}} E_{k,j,0}^{(n+1)}&=&|\Big(\boldsymbol{C}_{k,0}^{(n)}-\frac{h\alpha^{(n)} d_{-1}^{(n)}}{\beta^{(n)}}\boldsymbol{C}_{k,1}^{(n)}\Big),\boldsymbol{B}_{k,j}^{(n+1)},\ldots,\boldsymbol{B}_{k,j+k-3}^{(n+1)},\boldsymbol{B}_{k,j+k-2}^{(n+1)}|+\frac{h\alpha^{(n)} d_{-1}^{(n)}}{\beta^{(n)}}E_{k,j,1}^{(n+1)},\\ E_{k,j,1}^{(n+1)}&=&\beta^{(n)}|\Big(1-\frac{h u_0^{(n)}}{\beta^{(n)}}\Big)\boldsymbol{C}_{k,1}^{(n)},\boldsymbol{B}_{k,j}^{(n+1)},\ldots,\boldsymbol{B}_{k,j+k-3}^{(n+1)},\boldsymbol{B}_{k,j+k-2}^{(n+1)}|,\\ K_{k,j,1}^{(n+1)}&=&\beta^{(n)}\left| \begin{array}{cccccc} \frac{1}{\beta^{(n)}}&-\alpha^{(n)} c_j^{(n+1)}&-\alpha^{(n)} c_{j+1}^{(n+1)}&\ldots&-\alpha^{(n)} c_{j+k-2}^{(n+1)}\\ \Big(1-\frac{hu_0^{(n)}}{\beta^{(n)}}\Big)\boldsymbol{C}_{k-1,1}^{(n)}&\boldsymbol{B}_{k-1,j+1}^{(n+1)}&\boldsymbol{B}_{k-1,j+2}^{(n+1)}&\ldots&\boldsymbol{B}_{k-1,j+k-1}^{(n+1)} \end{array}\right|. \end{array}$$

Now, we operate the same row transformations as those on \(M_{k+2,j,-1}^{(n)}\) upon the above determinants. For the first two, we have

$$\begin{array}{@{}rcl@{}} E_{k,j,0}^{(n+1)}&=&|\boldsymbol{D}_{k,0}^{(n)},\frac{\beta^{(n)}}{h}\boldsymbol{C}_{k,j}^{(n+1)},\ldots\frac{\beta^{(n)}}{h}\boldsymbol{C}_{k,j+k-2}^{(n+1)}|+\frac{h\alpha^{(n)} d_{-1}^{(n)}}{\beta^{(n)}}E_{k,j,1}^{(n+1)}\\ &=&\Big(\frac{\beta^{(n)}}{h}\Big)^{k-1}{\Gamma}_{k,j,0}^{(n+1)}+\frac{h\alpha^{(n)} d_{-1}^{(n)}}{\beta^{(n)}}E_{k,j,1}^{(n+1)},\\ E_{k,j,1}^{(n+1)}&=&\beta^{(n)}|\boldsymbol{A}_{k,1}^{(n)},\frac{\beta^{(n)}}{h}\boldsymbol{C}_{k,j}^{(n+1)},\ldots,\frac{\beta^{(n)}}{h}\boldsymbol{C}_{k,j+k-2}^{(n+1)}|=\frac{(\beta^{(n)})^{k}}{h^{k-1}}F_{k,j,1}^{(n+1)}, \end{array}$$

which are nothing but (A.6f) and (A.6h). While for the third one, it is not hard to obtain the following result by conducting the row transformations from the third row to the last one,

$$\begin{array}{@{}rcl@{}} K_{k,j,1}^{(n+1)}&=&\beta^{(n)}\left| \begin{array}{cccccc} \frac{1}{\beta^{(n)}}&-\alpha^{(n)} c_j^{(n+1)}&-\alpha^{(n)} c_{j+1}^{(n+1)}&\ldots&-\alpha^{(n)} c_{j+k-2}^{(n+1)}\\ \boldsymbol{A}_{k-1,1}^{(n+1)}&\frac{\beta^{(n)}}{h}\boldsymbol{C}_{k-1,j+1}^{(n+1)}&\frac{\beta^{(n)}}{h}\boldsymbol{C}_{k-1,j+2}^{(n+1)}&\ldots&\frac{\beta^{(n)}}{h}\boldsymbol{C}_{k-1,j+k-1}^{(n+1)} \end{array}\right|\\ &=&-\frac{\alpha^{(n)}(\beta^{(n)})^{k-1}}{h^{k-2}}\left| \begin{array}{cccccc} -\frac{1}{h\alpha^{(n)}}&c_j^{(n+1)}&c_{j+1}^{(n+1)}&\ldots&c_{j+k-2}^{(n+1)}\\ \boldsymbol{A}_{k-1,1}^{(n+1)}&\boldsymbol{C}_{k-1,j+1}^{(n+1)}&\boldsymbol{C}_{k-1,j+2}^{(n+1)}&\ldots&\boldsymbol{C}_{k-1,j+k-1}^{(n+1)} \end{array}\right|\\ &=&-\frac{\alpha^{(n)}(\beta^{(n)})^{k-1}}{h^{k-2}}\left| \begin{array}{cccccc} (A_{1,0}^{(n)}-\frac{\beta^{(n)}}{h\alpha^{(n)}})&c_j^{(n+1)}&c_{j+1}^{(n+1)}&\ldots&c_{j+k-2}^{(n+1)}\\ \boldsymbol{A}_{k-1,1}^{(n+1)}&\boldsymbol{C}_{k-1,j+1}^{(n+1)}&\boldsymbol{C}_{k-1,j+2}^{(n+1)}&\ldots&\boldsymbol{C}_{k-1,j+k-1}^{(n+1)} \end{array}\right|\\ &=&-\frac{\alpha^{(n)}(\beta^{(n)})^{k-1}}{h^{k-2}}\Big(F_{k,j,0}^{(n+1)}-\frac{\beta^{(n)}}{h\alpha^{(n)}}H_{k-1,j+1}^{(n+1)}\Big), \end{array}$$

which identifies with (A.6k) by observing the fact

$$-\frac{1}{h\alpha^{(n)}}=A_{1,0}^{(n)}-\frac{\beta^{(n)}}{h\alpha^{(n)}}.$$

Thus, (A.6f), (A.6h) and (A.6k) all get verified.

Now, we remain to prove (A.6m). For determinant \(\tilde {G}_{2k,l}^{(n+1)}(x),~l=0,1\), from the second row to the last second row, after conducting several row transformations the same as those on \(M_{k+2,j,-1}^{(n)}\), and noticing the expressions (A.3), (3.1) and (3.10b) of yl,2k, \(P_{k}^{(n)}\) and \(Q_{k}^{(n)}\), respectively, we obtain that

$$\begin{array}{@{}rcl@{}} \tilde{G}_{2k,l}^{(n+1)}(x)&=&\left| \begin{array}{ccccc} \frac{\beta^{(n)}}{h}\boldsymbol{C}_{k-1,l}^{(n+1)}&\frac{\beta^{(n)}}{h}\boldsymbol{C}_{k-1,l+1}^{(n+1)}&\ldots&\frac{\beta^{(n)}}{h}\boldsymbol{C}_{k-1,l+k-1}^{(n+1)}\\ y_{l,2}&y_{l,4}&\ldots&y_{l,2k} \end{array}\right|\\ &=&\frac{(\beta^{(n)})^{k-1}(hx^2+1)}{h^k}\left| \begin{array}{ccccc} \boldsymbol{C}_{k-1,l}^{(n+1)}&\boldsymbol{C}_{k-1,l+1}^{(n+1)}&\ldots&\boldsymbol{C}_{k-1,l+k-1}^{(n+1)}\\ 1&x^2&\ldots&x^{2k-2} \end{array}\right|\\ &&-\alpha^{(n)}\Big(\frac{\beta^{(n)}}{h}\Big)^{k-1}\left| \begin{array}{ccccc} \boldsymbol{C}_{k-1,l}^{(n+1)}&\boldsymbol{C}_{k-1,l+1}^{(n+1)}&\ldots&\boldsymbol{C}_{k-1,l+k-1}^{(n+1)}\\ {\sum}_{i=1-l}^0c_{-i}^{(n+1)}x^{2i}&{\sum}_{i=1-l}^1c_{1-i}^{(n+1)}x^{2i}&\ldots&{\sum}_{i=1-l}^{k-1}c_{k-1-i}^{(n+1)}x^{2i} \end{array}\right|\\ &=&\frac{(\beta^{(n)})^{k-1}(hx^2+1)H_{k-1,l}^{(n+1)} P_{2k-2+l}^{(n+1)}(x)}{h^kx^l}-\frac{\alpha^{(n)} (\beta^{(n)})^{k-1} H_{k-1,l}^{(n+1)}Q_{2k-3+l}^{(n+1)}(x)}{h^{k-1}x^{l-1}}, \end{array}$$

which is exactly (A.6m).

Therefore, we complete the proof of Lemma A.2.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XM., Chang, XK., He, Y. et al. Generalized discrete Lotka-Volterra equation, orthogonal polynomials and generalized epsilon algorithm. Numer Algor 92, 335–375 (2023). https://doi.org/10.1007/s11075-022-01365-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01365-0

Keywords

Mathematics Subject Classification (2010)

Navigation