Skip to main content
Log in

A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrödinger equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is concerned with a linearized second-order finite difference scheme for solving the nonlinear time-fractional Schrödinger equation in d (d = 1,2,3) dimensions. Under a weak assumption on the nonlinearity, the optimal error estimate of the numerical solution is established without any restriction on the grid ratio. Besides the standard energy method, the key tools for analysis include the mathematical induction method, several inverse Sobolev inequalities, and a discrete fractional Gronwall-type inequality. The convergence rate of the proposed scheme is of O(τ2 + h2) with time step τ and mesh size h. Numerical results are carried out to confirm the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Acedo, S.B.Y.: An explicit finite difference method a new von neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antoine, X., Bao, W., Besse, C.: Computational methods for the dynamics of the nonlinear Schröinger/gross-Pitaevskii equations. Comput. Phys. Comm. 184, 2621–2633 (2013)

    Article  MATH  Google Scholar 

  4. Antoine, X., Tang, Q., Zhang, J.: On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/gross-Pitaevskii Equations. Int. J. Comput. Math. 95, 1423–1443 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bao, W., Cai, Y.: Mathematical theorey and numerical methods for Bose-Einstein condensation. Kinet. Relat. Mod. 6, 1–135 (2013)

    Article  MATH  Google Scholar 

  6. Bao, W., Carles, R., Su, C., Tang, Q.: Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation. SIAM J. Numer. Anal. 57, 657–680 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao, W., Carles, R., Su, C., Tang, Q.: Regularized numerical methods for the logarithmic Schrödinger equation. Numer. Math. 143, 461–487 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Van Gorder, R.A.: A new Jacobi spectral collocation method for solving 1 + 1 fractional Schrödinger equations and fractional coupled Schrödinger systems. Eur. Phys. J. plus. 129, 260 (2014)

    Article  Google Scholar 

  9. Bhrawy, A.H., Abdelkawy, M.A.: A fully spectral collocation approximation for multidimensional fractional Schrödinger equations. J. Comput. Phys. 294, 462–483 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, J., Xu, C.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 586, 93–103 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Cao, W., Zhang, Z., Karniadakis, G.E.: Time-splitting schemes for fractional differential equations I: smooth solutions. SIAM J. Sci. Comput. 37(4), A1752–A1776 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148, 397–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, X., Di, Y., Duan, J., Li, D.: Linearized compact, ADI Schemes for nonlinear time-fractional Schrödinger equations. Appl. Math. Lett. 84, 160–167 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, G., Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, G., Sun, Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Compu. Phys. 230(3), 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Henning, P., Peterseim, D.: Crank-nicolson Galerkin approximation to nonlinear Schrödinger equation with rough potentials. Math. Mod. Meth. Appl. S 27(11), 2147–2184 (2017)

    Article  MATH  Google Scholar 

  17. Henning, P., Wrnegrd, J.: A note on optimal H1-error estimates for Crank-Nicolson approximations to the nonlinear Schrödinger equation, BIT. https://doi.org/10.1007/s10543-020-00814-3

  18. Hicdurmaz, B., Ashyralyev, A.: A stable numerical method for multidimensional time fractional Schrödinger equations. Comput. Math. Appl. 72, 1703–1713 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iomin, A.: Fractional-time Schrdinger equation: fractional dynamics on a comb. Chaos Soliton. Fract. 44(4-5), 348–352 (2011)

    Article  MATH  Google Scholar 

  20. Jin, B., Lazarov, R., Zhou, Z.: Two schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38(1), A146–A170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin, B., Li, B., Zhou, Z.: Discrete maximal regularity of time-stepping schemes for fractional evolution equations. Numer. Math. 138, 101–131 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205(2), 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, D., Wang, J., Zhang, J.: Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39(6), A3067–A3088 (2017)

    Article  MATH  Google Scholar 

  26. Li, X., Cai, Y., Wang, P.: Operator-compensation methodswith mass and energy conservation for solving the Gross-Pitaevskii equation. Appl. Numer. Math. 151, 337–353 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, X., Zhu, J., Zhang, R., Cao, S.: A combined discontinuous Galerkin method for the dipolar Bose-Einstein condensation. J. Comput. Phys. 275, 363–376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liao, H., Mclean, W., Zhang, J.: A discrete grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liao, H., Mclean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. Commun. Comput. Phys. 30(2), 567–601 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liao, H. , Tang, T. , Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations. J. Comput. Phys. 414, 109473 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lubich, C.: On splitting methods for schrödinger-poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77, 2141–2153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ji, B., Liao, H., Gong, Y., Zhang, L.: Adaptive second-order Crank–Nicolson time-stepping schemes for time-fractional molecular beam epitaxial growth models. SIAM J. Sci. Comput. 42(3), B738–B760 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schröinger equation arising in quantum mechanic. Eng. Anal. Bound Elem. 37(2), 475–485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mustapha, K., Almutaw, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algorithms 61 (4), 525–543 (2012)

    Article  MathSciNet  Google Scholar 

  36. Mustapha, K.: Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130(3), 497–516 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45, 3339–3352 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ohannes, K., Charalambos, M. : A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36, 1779–1807 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sanz-Serna, J.M.: Methods for the numerical solution of the nonlinear Schrödinger equation. Math. Comput. 43, 21–27 (1984)

    Article  MATH  Google Scholar 

  41. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Thalhammer, M.: High-order exponential operator splitting methods for timedependent Schrödinger equations. SIAM J. Numer. Anal. 46, 2022–2038 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Thalhammer, M., Caliari, M., Neuhauser, C.: High-order time-splitting Hermite and Fourier spectral methods. J. Comput. Phys. 228, 822–832 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tofighi, A.: Probability structure of time fractional Schröinger equation. Acta. Physica Polonica Series A. 116(2), 114–119 (2009)

    Article  Google Scholar 

  45. Wang, J.: A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60, 390–407 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, S., Xu, M.: Generalized fractional schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48(4), 81 (2007)

    Article  Google Scholar 

  47. Wang, T., Wang, J., Guo, B.: Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation. J. Comput. Phys. 404, 109116 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, Y., Wang, G., Bu, L., Mei, L.: Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrödinger equation. Numer. Algorithms. https://doi.org/10.1007/s11075-020-01044-y

  49. Wei, L., He, Y., Zhang, X.: Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation. Finite Elem. Anal. Des. 59, 28–34 (2012)

    Article  MathSciNet  Google Scholar 

  50. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–77 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yang, Y., Wang, J., Zhang, S., Tohidi, E.: Convergence analysis of space-time Jacobi spectral collocation method for solving time-fractional Schrdinger equations. Appl. Math. Comput. 387, 124489 (2019)

    MATH  Google Scholar 

  52. Zhao, X.: Numerical integrators for continuous disordered nonlinear Schrödinger equation. J. Sci. Comput. 89, 40 (2021)

    Article  MATH  Google Scholar 

  53. Zhou, Y.: Application of Discrete Functional Analysis to the Finite Difference Methods. International Academic Publishers, Beijing (1990)

  54. Zhuang, P., Liu, F., Anh, V., Turner, I.: Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J. Appl. Math. 74(5), 645–667 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 11571181) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20171454).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingchun Wang.

Ethics declarations

The authors declare no competing interests.

Additional information

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Proof of the time-fractional Gronwall inequality given in Lemma 3.1

Appendix. Proof of the time-fractional Gronwall inequality given in Lemma 3.1

In this appendix, we present two useful lemmas which are main tools used for proving Lemma 3.1.

Lemma A.1

Let {pn} be a sequence defined by

$$ p_{0} = \frac{1}{C_{0}^{\sigma}}, \quad p_{n} = \frac{1}{C_{0}^{\sigma}} \sum\limits_{j=1}^{n} (C_{j-1}^{\sigma} - C_{j}^{\sigma}) p_{n-j}, \quad n \ge 1. $$
(A.1)

Then it holds that

$$ \begin{array}{@{}rcl@{}} &&\text{(i)}\quad 0\le p_{n} \le \frac{1}{C_{0}^{\sigma}}, \quad \sum\limits_{j=k}^{n+1} p_{n-j+1} C_{j-k}^{\sigma} = 1, \quad 1 \le k \le n; \end{array} $$
(A.2)
$$ \begin{array}{@{}rcl@{}} &&\text{(ii)}\quad{\Gamma}(2-\alpha) \sum\limits_{j=0}^{n} p_{n-j} \le \frac{(n+1)^{\alpha}}{\Gamma(1+\alpha)}; \end{array} $$
(A.3)
$$ \begin{array}{@{}rcl@{}} &&\text{(iii)}\quad\frac{\Gamma(2-\alpha)}{\Gamma(1+(m-1)\alpha)} \sum\limits_{j=1}^{n} p_{n-j+1} j^{(m-1)\alpha}\\ &&\qquad \leq \frac{(n+1)^{m\alpha}}{\Gamma(1+m\alpha)}, \quad m=1,2,\cdots. \end{array} $$
(A.4)

Proof

(i) Since \( C_{0}^{\sigma } \geq C_{1}^{\sigma } \geq {\cdots } \geq C_{j}^{\sigma } \ge 0 \) for j ≥ 0, it is easy to verify inductively from (A.1) that \(0 \leq p_{n} \leq 1/C_{0}^{\sigma } \ (n \geq 1) \) by mathematical induction. Moreover, we have

$$ {\Phi}_{n} = \sum\limits_{j=1}^{n+1} p_{n-j+1} C_{j-1}^{\sigma} = \sum\limits_{j=0}^{n} p_{n-j} C_{j}^{\sigma} = \sum\limits_{j=1}^{n} p_{n-j} C_{j-1}^{\sigma} = {\Phi}_{n-1}, \qquad n \ge 1. $$
(A.5)

This implies \( {\Phi }_{n} = {\Phi }_{0} = p_{0} C_{0}^{\sigma } = 1 \) for n ≥ 1. Substituting j = l + k − 1, we further find

$$ \sum\limits_{j=k}^{n+1} p_{n-j+1} C_{j-k}^{\sigma} = \sum\limits_{l=1}^{n-k+2} p_{n-k+2-l} C_{l-1}^{\sigma} = {\Phi}_{n-k+1} = {\Phi}_{n} = 1, \qquad 1 \leq k \leq n. $$
(A.6)

The equality (A.2) is proved.

(ii) To prove (A.3) and (A.4), we introduce an auxiliary function q(t) = tmα/Γ(1 + mα) for m ≥ 1. Then for j ≥ 1, we have

$$ {\int}_{0}^{j+\sigma} \frac{(j+\sigma-s)^{-\alpha} q^{\prime}(s)}{\Gamma(1-\alpha)} ds = \frac{B(1-\alpha, m\alpha) (j+\sigma)^{(m-1)\alpha}}{\Gamma(1-\alpha) {\Gamma}(m\alpha)} = \frac{(j+\sigma)^{(m-1)\alpha}}{\Gamma(1+(m-1)\alpha)}. $$
(A.7)

Let Q(t) be a quadratic interpolation of q(t) using the points (s − 1,q(s − 1)), (s,q(s)), (s + 1,q(s + 1)) for 1 ≤ sj, and a linear interpolation of q(t) using the points (j,q(j)), (j + 1,q(j + 1)). We define the approximation error by

$$ \begin{array}{@{}rcl@{}} &&{\int}_{0}^{j+\sigma} \frac{q^{\prime}(s) - Q^{\prime}(s)}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} ds \\ &=& \sum\limits_{k=1}^{j} {\int}_{k-1}^{k} \frac{q^{\prime}(s) - Q^{\prime}(s)}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} ds + {\int}_{j}^{j+\sigma} \frac{q^{\prime}(s) - Q^{\prime}(s)}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} ds \\ &:=& \sum\limits_{k=1}^{j} {R_{k}^{j}} + R_{\sigma}^{j}, \end{array} $$
(A.8)

where

$$ \begin{array}{@{}rcl@{}} {R_{k}^{j}} &=& {\int}_{k-1}^{k} \frac{q^{\prime}(s) - Q^{\prime}(s)}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} ds \\ &=& -\frac{\alpha}{\Gamma(1-\alpha)} {\int}_{k-1}^{k} \frac{q(s) - Q(s)}{(j+\sigma-s)^{\alpha+1}} ds \\ &=& -\frac{\alpha}{\Gamma(1-\alpha)} {\int}_{k-1}^{k} \frac{ \frac{1}{6} q^{\prime\prime\prime}(\xi_{s}) (s-(k-1))(s-k)(s-(k+1)) }{(j+\sigma-s)^{\alpha+1}} ds, \quad\\ && 1 \leq k \leq j, \end{array} $$
(A.9)
$$ \begin{array}{@{}rcl@{}} R_{\sigma}^{j} &=& {\int}_{j}^{j+\sigma} \frac{q^{\prime}(s) - Q^{\prime}(s)}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} ds \\ &=& {\int}_{j}^{j+\sigma} \frac{q^{\prime}(s) - q(j+\frac{1}{2}) + q(j+\frac{1}{2}) - Q^{\prime}(s)}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} ds \\ &=& {\int}_{j}^{j+\sigma} \frac{2q^{\prime\prime}(j+\frac{1}{2})(s-(j+\frac{1}{2})) + q^{\prime\prime\prime}(\xi_{s})(s-(j+\frac{1}{2}))^{2}}{2{\Gamma}(1-\alpha)(j+\sigma-s)^{\alpha}} ds \\ &&- {\int}_{j}^{j+\sigma} \frac{q^{\prime\prime\prime}(\xi_{s})}{24{\Gamma}(1-\alpha)(j+\sigma-s)^{\alpha}} ds \\ &=& {\int}_{j}^{j+\sigma} \frac{q^{\prime\prime\prime}(\xi_{s})(s-(j+\frac{1}{2}))^{2}}{2{\Gamma}(1-\alpha)(j+\sigma-s)^{\alpha}} ds\\ &&- {\int}_{j}^{j+\sigma} \frac{q^{\prime\prime\prime}(\xi_{s})}{24{\Gamma}(1-\alpha)(j+\sigma-s)^{\alpha}} ds. \end{array} $$
(A.10)

Combining (A.7) and (A.8) yields

$$ \frac{(j+\sigma)^{(m-1)\alpha}}{\Gamma(1+(m-1)\alpha)} = \frac{1}{\Gamma(2-\alpha)} \sum\limits_{k=0}^{j} C_{j-k}^{\sigma} (q(k+1) - q(k)) + \sum\limits_{k=1}^{j} {R_{k}^{j}} + R_{\sigma}^{j}. $$
(A.11)

Noting that \( q^{\prime \prime \prime }(t) \geq 0 \) for m = 1, we have \( {R_{k}^{j}} \leq 0 \) and

$$ \begin{array}{@{}rcl@{}} R_{\sigma}^{j} &\leq& \frac{q^{\prime\prime\prime}(\xi)}{24{\Gamma}(1-\alpha)} {\int}_{j}^{j+\sigma} \frac{12(s-(j+\frac{1}{2}))^{2} - 1}{(j+\sigma-s)^{\alpha}} ds \\ &=&\frac{q^{\prime\prime\prime}(\xi)}{24{\Gamma}(1-\alpha)} \frac{4(\sigma-1)}{(2\sigma+1)\sigma(2\sigma-1)} \leq 0, \end{array} $$
(A.12)

so we have

$$ \begin{array}{@{}rcl@{}} \frac{1}{\Gamma(2-\alpha)} \sum\limits_{k=0}^{j} C_{j-k}^{\sigma} (q(k+1) - q(k)) \geq 1. \end{array} $$
(A.13)

Multiplying (A.13) by Γ(2 − α)pnj and summing it over for j from 0 to n, we have

$$ \begin{array}{@{}rcl@{}} {\Gamma}(2-\alpha) \sum\limits_{j=0}^{n} p_{n-j} &\leq& \sum\limits_{j=0}^{n} p_{n-j} \sum\limits_{k=1}^{j+1} C_{j-k+1}^{\sigma} (q(k) - q(k-1))\\ &= & \sum\limits_{k=1}^{n+1} (q(k) - q(k-1)) \sum\limits_{j=k-1}^{n} p_{n-j} C_{j-k+1}^{\sigma} \\ &= & \sum\limits_{k=1}^{n+1} (q(k) - q(k-1)) \sum\limits_{j=k}^{n+1} p_{n-j+1} C_{j-k}^{\sigma} \\ &= & \sum\limits_{k=1}^{n+1} (q(k) - q(k-1))\\ &= & \frac{(n+1)^{\alpha}}{\Gamma(1+\alpha)}, \end{array} $$
(A.14)

where we the equality (A.2) was used.

(iii) Consider of (A.11), we have

$$ \begin{array}{@{}rcl@{}} \frac{j^{(m-1)\alpha}}{\Gamma(1+(m-1)\alpha)} &\leq &\frac{(j+\sigma)^{(m-1)\alpha}}{\Gamma(1+(m-1)\alpha)} \\ &=&\frac{1}{\Gamma(2-\alpha)} \sum\limits_{k=0}^{j} C_{j-k}^{\sigma} (q(k+1) - q(k)) \\ &&+ \sum\limits_{k=1}^{j} {R_{k}^{j}} + R_{\sigma}^{j}. \end{array} $$
(A.15)

We multiply (A.15) by Γ(2 − α)pnj+ 1 and sum the resulting inequality for j from 1 to n to obtain

$$ \begin{array}{@{}rcl@{}} &&\frac{\Gamma(2-\alpha)}{\Gamma(1+(m-1)\alpha)} \sum\limits_{j=1}^{n} p_{n-j+1} j^{(m-1)\alpha}\\ &&\leq \sum\limits_{j=1}^{n} p_{n-j+1} \sum\limits_{k=0}^{j} C_{j-k}^{\sigma}\left( q(k+1) - q(k)\right) \\ &&\quad + {\Gamma}(2-\alpha) \sum\limits_{j=1}^{n} p_{n-j+1} \left( \sum\limits_{k=1}^{j} {R_{k}^{j}} + R_{\sigma}^{j}\right). \end{array} $$
(A.16)

If 1 ≤ m ≤ 1/α, \( q^{\prime \prime \prime }(t) \geq 0 \), then \( {R_{k}^{j}} \leq 0 \) and \( R_{\sigma }^{j} \le 0 \), so (A.4) follows immediately from the above estimate. If m ≥ 1/α, by (A.8), we have

$$ \begin{array}{@{}rcl@{}} {R_{k}^{j}} &=& {\int}_{k-1}^{k} \frac{q^{\prime}(s) - Q^{\prime}(s)}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} ds \\ &=& {\int}_{k-1}^{k} \frac{q^{\prime}(s) - [q(k)-q(k-1) + (q(k-1) - 2q(k) + q(k+1))(s-(k-\frac{1}{2}))]}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} ds \\ &=& {\int}_{k-1}^{k} \frac{q^{\prime}(s) - (q(k)-q(k-1))}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} ds \\ && + {\int}_{k-1}^{k} \frac{(s-(k-\frac{1}{2}))[(q(k)-q(k-1)) - (q(k+1) - q(k))]}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} ds \\ &=& {\int}_{k-1}^{k} \frac{(j+\sigma-s)^{-\alpha}}{\Gamma(1-\alpha)} {\int}_{k-1}^{k} {\int}_{\mu}^{s} q^{\prime\prime}(\eta) d\eta d\mu ds \\ &&+ {\int}_{k-1}^{k} \frac{s-(k-\frac{1}{2})}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} {\int}_{k-1}^{k} q^{\prime}(\mu) d\mu ds \\ && - {\int}_{k-1}^{k} \frac{s-(k-\frac{1}{2})}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} {\int}_{k}^{k+1} q^{\prime}(\mu) d\mu ds \\ &\leq& {\int}_{k-1}^{k} \frac{(j+\sigma-s)^{-\alpha}}{\Gamma(1-\alpha)} {\int}_{k-1}^{k} {\int}_{\mu}^{k} q^{\prime\prime}(\eta) d\eta d\mu ds\\ && + {\int}_{k-1}^{k} \frac{s-(k-\frac{1}{2})}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} {\int}_{k-1}^{k} q^{\prime}(\mu) d\mu ds \\ && - {\int}_{k-1}^{k} \frac{s-(k-\frac{1}{2})}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} {\int}_{k}^{k+1} q^{\prime}(\mu) d\mu ds \\ &=& \frac{a_{j-k+1}^{\sigma}}{\Gamma(2-\alpha)} {\int}_{k-1}^{k} {\int}_{\mu}^{k} q^{\prime\prime}(\eta) d\eta d\mu + \frac{b_{j-k+1}^{\sigma}}{\Gamma(2-\alpha)} {\int}_{k-1}^{k} q^{\prime}(\mu) d\mu \\ && - \frac{b_{j-k+1}^{\sigma}}{\Gamma(2-\alpha)} {\int}_{k}^{k+1} q^{\prime}(\mu) d\mu \end{array} $$
$$ \begin{array}{@{}rcl@{}} &=& \frac{a_{j-k+1}^{\sigma}}{\Gamma(2-\alpha)} {\int}_{k-1}^{k} \frac{k^{m\alpha-1} - \mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu + \frac{b_{j-k+1}^{\sigma}}{\Gamma(2-\alpha)} {\int}_{k-1}^{k} \frac{\mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu \\ && - \frac{b_{j-k+1}^{\sigma}}{\Gamma(2-\alpha)} {\int}_{k}^{k+1} \frac{\mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu \\ &=& \frac{a_{j-k+1}^{\sigma}}{\Gamma(2-\alpha)} {\int}_{k-1}^{k} \frac{k^{m\alpha-1} - \mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu - \frac{b_{j-k+1}^{\sigma}}{\Gamma(2-\alpha)} {\int}_{k-1}^{k} \frac{k^{m\alpha-1} - \mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu \\ &&+ \frac{b_{j-k+1}^{\sigma}}{\Gamma(2-\alpha)} {\int}_{k}^{k+1} \frac{k^{m\alpha-1} - \mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu \\ &\leq& \frac{a_{j-k+1}^{\sigma} - b_{j-k+1}^{\sigma}}{\Gamma(2-\alpha)} {\int}_{k-1}^{k} \frac{k^{m\alpha-1} - \mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu \\ && + \frac{b_{j-k+1}^{\sigma}}{\Gamma(2-\alpha)} {\int}_{k}^{k+1} \frac{(k+1)^{m\alpha-1} - \mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu \end{array} $$
(A.17)

and

$$ \begin{array}{@{}rcl@{}} R_{\sigma}^{j} &=& {\int}_{j}^{j+\sigma} \frac{q^{\prime}(s) - Q^{\prime}(s)}{\Gamma(1-\alpha)(j+\sigma-s)^{\alpha}} ds \\ &=&{\int}_{j}^{j+\sigma} \frac{(j+\sigma-s)^{-\alpha}}{\Gamma(1-\alpha)} {\int}_{j}^{j+1} q^{\prime}(s) - q^{\prime}(\mu) d\mu ds \\ &\leq& \frac{a_{0}^{\sigma}}{\Gamma(2-\alpha)} {\int}_{j}^{j+1} \frac{(j+1)^{m\alpha-1} - \mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu, \end{array} $$
(A.18)

so that

$$ \sum\limits_{k=1}^{j}{R_{k}^{j}} + R_{\sigma}^{j} \leq \sum\limits_{k=0}^{j} C_{j-k}^{\sigma} {\int}_{k}^{k+1} \frac{(k+1)^{m\alpha-1} - \mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu. $$
(A.19)

Because of

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{j=1}^{n} p_{n-j+1} \sum\limits_{k=0}^{j} C_{j-k}^{\sigma} (q(k+1) - q(k)) \\ &=& \sum\limits_{k=0}^{n}(q(k+1)-q(k)) \sum\limits_{j=k}^{n} p_{n-j+1} C_{j-k}^{\sigma} - p_{n+1} c_{0}^{\sigma} (q(1)-q(0)) \\ &\leq&\sum\limits_{k=0}^{n} (q(k+1) - q(k)) \sum\limits_{j=k}^{n+1} p_{n-j+1} C_{j-k}^{\sigma} \\ &=& \frac{(n+1)^{m\alpha}}{\Gamma(1+m\alpha)}, \end{array} $$
(A.20)

and

$$ \begin{array}{@{}rcl@{}} &&{\Gamma}(2-\alpha) \sum\limits_{j=1}^{n} p_{n-j+1} \left( \sum\limits_{k=1}^{j} {R_{k}^{j}} + R_{\sigma}^{j}\right) \\ &\leq&\sum\limits_{j=1}^{n} p_{n-j+1} \sum\limits_{k=0}^{j} C_{j-k}^{\sigma} {\int}_{k}^{k+1} \frac{(k+1)^{m\alpha-1} - \mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu \\ &=& \sum\limits_{k=0}^{n} {\int}_{k}^{k+1} \frac{(k+1)^{m\alpha-1} - \mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu \sum\limits_{j=k}^{n} p_{n-j+1} C_{j-k}^{\sigma} - p_{n+1} C_{0}^{\sigma} {{\int}_{0}^{1}} \frac{1-\mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu \\ &\leq& \sum\limits_{k=0}^{n} {\int}_{k}^{k+1} \frac{(k+1)^{m\alpha-1} - \mu^{m\alpha-1}}{\Gamma(m\alpha)} d\mu \sum\limits_{j=k}^{n+1} p_{n-j+1} C_{j-k}^{\sigma} \\ &=& \sum\limits_{k=0}^{n} \frac{(k+1)^{m\alpha-1}}{\Gamma(m\alpha)} - \frac{(n+1)^{m\alpha}}{\Gamma(1+m\alpha)} \\ &\leq& \frac{(n+1)^{m\alpha}}{\Gamma(1+m\alpha)} - \frac{(n+1)^{m\alpha}}{\Gamma(1+m\alpha)} \\ &=& 0, \end{array} $$
(A.21)

one can immediately get (A.4), and the proof of Lemma A.1 is completed. □

Lemma A.2

Let \( \vec {e} = (1,1,\cdots ,1)^{T} \in R^{n+1} \) and

$$ J = 2 {\Gamma}(2-\alpha) \lambda \tau^{\alpha} \begin{bmatrix} 0 & p_{1} & {\cdots} & p_{n-1} & p_{n} \\ 0 & 0 & {\cdots} & p_{n-2} & p_{n-1} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} & {\vdots} \\ 0 & 0 & {\cdots} & 0 & p_{1} \\ 0 & 0 & {\cdots} & 0 & 0 \end{bmatrix}_{(n+1) \times (n+1)} $$
(A.22)

Then, it holds that

$$ \begin{array}{@{}rcl@{}} &&\text{(i)} \quad J^{l} = 0, \quad l \geq n+1; \end{array} $$
(A.23)
$$ \begin{array}{@{}rcl@{}} &&\text{(ii)} \quad J^{m} \vec{e} \le \frac{1}{\Gamma(1+m\alpha)} \left( (2\lambda t_{n+1}^{\alpha})^{m}, (2\lambda t_{n}^{\alpha})^{m}, \cdots, (2\lambda t_{1}^{\alpha})^{m} \right)^{T}, \quad \\ &&\qquad m = 0,1,2,\cdots; \end{array} $$
(A.24)
$$ \begin{array}{@{}rcl@{}} &&\text{(iii)} \quad \sum\limits_{j=0}^{l} J^{j} \vec{e} = \sum\limits_{j=0}^{n} J^{j} \vec{e} \leq \left( E_{\alpha}(2\lambda t_{n+1}^{\alpha}), E_{\alpha}(2\lambda t_{n}^{\alpha}), \cdots, E_{\alpha}(2\lambda t_{1}^{\alpha}) \right)^{T}, \quad \\ &&\qquad l \geq n+1. \end{array} $$
(A.25)

Proof

The proof is similar to that of Lemma 3.3 in [24], and we here omit it for brevity. □

We now turn back to the proof of Lemma 3.1

Proof Proof of Lemma 3.1

By the definition of \( D_{\sigma }^{\alpha } \), we get

$$ \sum\limits_{k=0}^{j} C_{j-k}^{\sigma} (\omega^{k+1} - \omega^{k}) \le {\Gamma}(2-\alpha)\tau^{\alpha} (\lambda_{1} \omega^{j+1} + \lambda_{2} \omega^{j} + \lambda_{3} \omega^{j-1}) + {\Gamma}(2-\alpha)\tau^{\alpha} g^{j}, \quad j \geq 1. $$
(A.26)

Multiplying inequality (A.26) by pnj and summing over for j from 1 to n, we have

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{j=1}^{n} p_{n-j} \sum\limits_{k=1}^{j+1} C_{j-k+1}^{\sigma} (\omega^{k} - \omega^{k-1}) \\ &&\leq {\Gamma}(2-\alpha)\tau^{\alpha} \sum\limits_{j=1}^{n} p_{n-j} (\lambda_{1} \omega^{j+1} + \lambda_{2} \omega^{j} + \lambda_{3} \omega^{j-1}) \\ && \quad + {\Gamma}(2-\alpha)\tau^{\alpha} \sum\limits_{j=1}^{n} p_{n-j} g^{j}. \end{array} $$
(A.27)

By using the result (A.2) in Lemma A.1, we obtain

$$ \begin{array}{@{}rcl@{}} && \sum\limits_{j=1}^{n} p_{n-j} \sum\limits_{k=1}^{j+1} C_{j-k+1}^{\sigma} (\omega^{k} - \omega^{k-1}) \\ &=&\sum\limits_{k=1}^{n+1} (\omega^{k} - \omega^{k-1}) {\sum}_{j=k+1}^{n} p_{n-j} C_{j-k+1}^{\sigma} - p_{n} C_{0}^{\sigma} (\omega^{1} - \omega^{0}) \\ &=&\sum\limits_{k=1}^{n+1} (\omega^{k} - \omega^{k-1}) - p_{n} C_{0}^{\sigma} (\omega^{1} - \omega^{0}) \\ &=&\omega^{n+1} - \omega^{0} - p_{n} C_{0}^{\sigma} (\omega^{1} - \omega^{0}), \quad n \geq 1. \end{array} $$
(A.28)

It follows that

$$ \begin{array}{@{}rcl@{}} \omega^{n+1} &\leq&\omega^{0} + p_{n} C_{0}^{\sigma} (\omega^{1} - \omega^{0}) + {\Gamma}(2-\alpha)\tau^{\alpha} \sum\limits_{j=1}^{n} p_{n-j} g^{j} \\ &&+ {\Gamma}(2-\alpha)\tau^{\alpha} \sum\limits_{j=1}^{n} p_{n-j} \left( \lambda_{1} \omega^{j+1} + \lambda_{2} \omega^{j} + \lambda_{3} \omega^{j-1}\right). \end{array} $$
(A.29)

Because of

$$ \frac{a_{0}^{\sigma}}{\Gamma(2-\alpha)\tau^{\alpha}} \left( \omega^{1} - \omega^{0}\right) = D_{\sigma}^{\alpha} \omega^{0} \leq \lambda_{1} \omega^{1} + \lambda_{2} \omega^{0} + g^{0} $$

and

$$ \frac{C_{0}^{\sigma}}{a_{0}^{\sigma}} = \frac{a_{0}^{\sigma} + b_{1}^{\sigma}}{a_{0}^{\sigma}} \leq 6, $$

we get

$$ \begin{array}{@{}rcl@{}} \omega^{n+1} &\leq& \omega^{0} + 6{\Gamma}(2-\alpha)\tau^{\alpha} p_{n} (\lambda_{1} \omega^{1} + \lambda_{2} \omega^{0} + g^{0}) + {\Gamma}(2-\alpha)\tau^{\alpha} \sum\limits_{j=1}^{n} p_{n-j} g^{j} \\ && + {\Gamma}(2-\alpha)\tau^{\alpha} \sum\limits_{j=1}^{n} p_{n-j} (\lambda_{1} \omega^{j+1} + \lambda_{2} \omega^{j} + \lambda_{3} \omega^{j-1}) \\ &=& {\Gamma}(2-\alpha) \lambda_{1} \tau^{\alpha} p_{0} \omega^{n+1} + (1 + 6{\Gamma}(2-\alpha) \lambda_{2} \tau^{\alpha} p_{n} + {\Gamma}(2-\alpha)\lambda_{3} \tau^{\alpha} p_{n-1}) \omega^{0} \\ && + 6{\Gamma}(2-\alpha) \tau^{\alpha} p_{n} g^{0} + {\Gamma}(2-\alpha)\tau^{\alpha} {\sum}_{j=1}^{n} p_{n-j} g^{j} \\ && + 6{\Gamma}(2-\alpha) \lambda_{1} \tau^{\alpha} p_{n} \omega^{1} + {\Gamma}(2-\alpha) \lambda_{1} \tau^{\alpha} \sum\limits_{j=1}^{n-1} p_{n-j} \omega^{j+1} \\ && + {\Gamma}(2-\alpha) \lambda_{2} \tau^{\alpha} \sum\limits_{j=1}^{n} p_{n-j} \omega^{j} + {\Gamma}(2-\alpha) \lambda_{3} \tau^{\alpha} \sum\limits_{j=2}^{n} p_{n-j} \omega^{j-1}. \end{array} $$
(A.30)

It follows that

$$ \begin{array}{@{}rcl@{}} \omega^{n+1} & \leq& 6 \omega^{0} + 12 {\Gamma}(2-\alpha) \tau^{\alpha} \sum\limits_{j=0}^{n} p_{n-j} g^{j} + 12 {\Gamma}(2-\alpha) \lambda_{1} \tau^{\alpha} \sum\limits_{j=0}^{n-1} p_{n-j} \omega^{j+1} \\ && + 2 {\Gamma}(2-\alpha) \lambda_{2} \tau^{\alpha} \sum\limits_{j=1}^{n} p_{n-j} \omega^{j} \\ && + 2 {\Gamma}(2-\alpha) \lambda_{3} \tau^{\alpha} \sum\limits_{j=2}^{n} p_{n-j} \omega^{j-1}, \quad n \geq 1, \end{array} $$
(A.31)

when ττ. By using the result (A.3) in Lemma A.1, we obtain

$$ \begin{array}{@{}rcl@{}} {\Gamma}(2-\alpha) \tau^{\alpha} \sum\limits_{j=0}^{n} p_{n-j} g^{j} &\leq& {\Gamma}(2-\alpha) \tau^{\alpha} \max_{0\le j\le n} g^{j} \sum\limits_{j=0}^{n} p_{n-j} \\ &\leq& \frac{t_{n+1}^{\alpha}}{\Gamma(1+\alpha)} \max_{0\leq j\le n} g^{j}, \quad n \geq 1. \end{array} $$
(A.32)

It follows that

$$ \omega^{n+1} \leq {\Psi}_{n} + {\Gamma}(2-\alpha) \left( 12 \lambda_{1} \tau^{\alpha} \sum\limits_{j=0}^{n-1} p_{n-j} \omega^{j+1} + 2 \lambda_{2} \tau^{\alpha} \sum\limits_{j=1}^{n} p_{n-j} \omega^{j} + 2 \lambda_{3} \tau^{\alpha} \sum\limits_{j=2}^{n} p_{n-j} \omega^{j-1} \right), $$
(A.33)

where

$$ {\Psi}_{n} = 6 \omega^{0} + \frac{12t_{n+1}^{\alpha}}{\Gamma(1+\alpha)} \underset{0\leq j\leq n}{\max} g^{j}, $$
(A.34)

and it is easy to get that Ψn ≥Ψk for nk ≥ 1. Let V = (ωn+ 1,ωn,⋯ ,ω1)T, then (A.33) can be written in a vector form by

$$ V \leq {\Psi}_{n} \vec{e} + (6\lambda_{1} J_{1} + \lambda_{2} J_{2} + \lambda_{3} J_{3}) V, $$
(A.35)

where

$$ \begin{array}{@{}rcl@{}} J_{1} = 2 {\Gamma}(2-\alpha) \tau^{\alpha} \begin{bmatrix} 0 & p_{1} & {\cdots} & p_{n-1} & p_{n} \\ 0 & 0 & {\cdots} & p_{n-2} & p_{n-1} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} & {\vdots} \\ 0 & 0 & {\cdots} & 0 & p_{1} \\ 0 & 0 & {\cdots} & 0 & 0 \end{bmatrix}_{(n+1)\times(n+1)}, \end{array} $$
(A.36)
$$ \begin{array}{@{}rcl@{}} J_{2} = 2 {\Gamma}(2-\alpha) \tau^{\alpha} \begin{bmatrix} 0 & p_{0} & {\cdots} & p_{n-2} & p_{n-1} \\ 0 & 0 & {\cdots} & p_{n-3} & p_{n-2} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} & {\vdots} \\ 0 & 0 & {\cdots} & 0 & p_{0} \\ 0 & 0 & {\cdots} & 0 & 0 \end{bmatrix}_{(n+1)\times(n+1)}, \end{array} $$
(A.37)
$$ \begin{array}{@{}rcl@{}} J_{3} = 2 {\Gamma}(2-\alpha) \tau^{\alpha} \begin{bmatrix} 0 & 0 & {\cdots} & p_{n-3} & p_{n-2} \\ 0 & 0 & {\cdots} & p_{n-4} & p_{n-3} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} & {\vdots} \\ 0 & 0 & {\cdots} & 0 & 0 \\ 0 & 0 & {\cdots} & 0 & 0 \end{bmatrix}_{(n+1)\times(n+1)}. \end{array} $$
(A.38)

By (A.1), we have

$$ \begin{array}{@{}rcl@{}} p_{i} \leq \frac{C_{0}^{\sigma}}{C_{0}^{\sigma} - C_{1}^{\sigma}} p_{i+1}, \qquad p_{1} \leq \frac{C_{0}^{\sigma}}{C_{1}^{\sigma} - C_{2}^{\sigma}} p_{i+2}, \end{array} $$
(A.39)

therefore,

$$ J_{2} V \leq \frac{C_{0}^{\sigma}}{C_{0}^{\sigma} - C_{1}^{\sigma}} \frac{1}{\lambda} J V, \qquad J_{2} V \leq \frac{C_{0}^{\sigma}}{C_{1}^{\sigma} - C_{2}^{\sigma}} \frac{1}{\lambda} JV, $$
(A.40)

which shows that

$$ V \leq J V + {\Psi}_{n} \vec{e}, $$
(A.41)

where J is defined in (A.22) with \( \lambda = 6 \lambda _{1} + \frac {C_{0}^{\sigma } \lambda _{2}}{C_{0}^{\sigma } - C_{1}^{\sigma }} + \frac {C_{0}^{\sigma } \lambda _{3}}{C_{1}^{\sigma } - C_{2}^{\sigma }} \). As a result, we see that

$$ \begin{array}{@{}rcl@{}} V &\leq& JV + {\Psi}_{n} \vec{e} \leq J(JV + {\Psi}_{n} \vec{e}) + {\Psi}_{n} \vec{e} = J^{2}{V} + {\Psi}_{n} \sum\limits_{j=0}^{1} J^{j} \vec{e} \\ &\leq& {\cdots} \leq J^{n+1} V + {\Psi} \sum\limits_{j=0}^{n} J^{j} \vec{e}. \end{array} $$
(A.42)

This together with Lemma A.2 completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, T. & Zhang, T. A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrödinger equation. Numer Algor 92, 1153–1182 (2023). https://doi.org/10.1007/s11075-022-01335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01335-6

Keywords

Mathematics Subject Classification (2010)

Navigation