Skip to main content
Log in

A hybridizable discontinuous triangular spectral element method on unstructured meshes and its hp-error estimates

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, a hybridizable discontinuous triangular spectral element method (HDTSEM) using tensorial nodal basis functions on unstructured meshes is proposed and analyzed. The elemental local basis is constructed from the one-to-one rectangle-to-triangle transform (Li et al., Lecture Notes in Computational Sciences and Engineering 76:237–246, 2011) and glued together under the hybridizable discontinuous Galerkin (HDG) framework. This offers much flexibility allowing for mismatch in nodal points across elements, substantial reduction in global degree of freedoms (DoFs) and excellent mesh adaptivity without sacrificing the high accuracy of a typical spectral element method (SEM). Here, optimal L2-error estimates are obtained on quasi-uniform unstructured meshes and ample numerical results are provided to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Scientific Computation Springer, Berlin (2007)

    Book  Google Scholar 

  3. Chen, L., Shen, J., Xu, C.: A unstructured nodal spectral-element method for the Navier-Stokes equations. Commum. Comput. Phys. 12, 315–336 (2012)

    Article  MathSciNet  Google Scholar 

  4. Chen, Q., Babuška, I.: Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Comput. Methods Appl. Math. Eng. 128, 405–417 (1995)

    Article  MathSciNet  Google Scholar 

  5. Ciarlet, P.G.: The finite element method for elliptic problems SIAM (2002)

  6. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  7. Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comp. 81, 1327–1353 (2012)

    Article  MathSciNet  Google Scholar 

  8. Cockburn, B., Fu, G., Sayas, F.J.: Superconvergence by M-decompositions. Part i: General theory for HDG methods for diffusion. Math. Comp. 86, 1609–1641 (2017)

    Article  MathSciNet  Google Scholar 

  9. Deville, M.O., Fischer, P.F., Fischer, P.F., Mund, E., et al.: High-Order Methods for Incompressible Fluid Flow, vol. 9. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge (2002)

  10. Dolejší, V, Feistauer, M.: Discontinuous Galerkin method: Analysis and applications to compressible flow. Springer Series in Computational Mathematics, p. 48 (2015)

  11. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)

    Article  MathSciNet  Google Scholar 

  12. Duffy, M.G.: Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19, 1260–1262 (1982)

    Article  MathSciNet  Google Scholar 

  13. Egger, H., Waluga, C.: Hp analysis of a hybrid DG method for stokes flow. SIAM J. Numer. Anal. 33, 687–721 (2013)

    Article  MathSciNet  Google Scholar 

  14. Georgoulis, E.H., Hall, E., Melenk, J.M.: On the suboptimality of the p-version interior penalty discontinuous Galerkiny method. J. Sci. Comput. 42, 54–67 (2010)

    Article  MathSciNet  Google Scholar 

  15. Haupt, L., Stiller, J., Nagel, W.E.: A fast spectral element solver combining static condensation and multigrid techniques. J. Comput. Phys. 255, 384–395 (2013)

    Article  MathSciNet  Google Scholar 

  16. Hesthaven, J.S.: From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal. 35, 655–676 (1998)

    Article  MathSciNet  Google Scholar 

  17. Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, vol. 54, Texts in Applied Mathematics Springer (2008)

  18. Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002)

    Article  MathSciNet  Google Scholar 

  19. Huismann, I., Stiller, J., Fröhlich, J.: Factorizing the factorization–a spectral-element solver for elliptic equations with linear operation count. J. Comput. Phys. 346, 437–448 (2017)

    Article  MathSciNet  Google Scholar 

  20. Karniadakis, G., Sherwin, S.: Spectral hp element methods for computational fluid dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press New York (2005)

  21. Kirby, R.M., Sherwin, S.J., Cockburn, B.: To CG or to HDG: a comparative study. J. Sci. Comput. 51, 183–212 (2012)

    Article  MathSciNet  Google Scholar 

  22. Koornwinder, T.: Two-variable analogues of the classical orthogonal polynomials, in Theory and application of special functions. Elsevier, pp 435–495 (1975)

  23. Kopriva, D.A.: Implementing spectral methods for partial differential equations: Algorithms for scientists and engineers, Scientific Computation Springer (2009)

  24. Li, H., Wang, L.-L.: A spectral method on tetrahedra using rational basis functions. Int. J. Numer. Anal. Model. 7, 330–355 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Li, J., Ma, H., Wang, L.-L., Wu, H.: Spectral element methods on hybrid triangular and quadrilateral meshes. Int. J. Numer. Anal. Model. 15, 111–133 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Li, Y., Wang, L.-L., Li, H., Ma, H.: A new spectral method on triangles. Lecture Notes in Computational Sciences and Engineering 76, 237–246 (2011)

    Article  MathSciNet  Google Scholar 

  27. Liu, W., Wang, L.-L., Wu, B.: Optimal error estimates for Legendre approximation of singular functions with limited regularity, arXiv:http://arxiv.org/abs/2006.00667 (2020)

  28. Pasquetti, R., Rapetti, F.: Spectral element methods on unstructured meshes: which interpolation points? Numer. Algorithms 55, 349–366 (2010)

    Article  MathSciNet  Google Scholar 

  29. Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)

    Article  Google Scholar 

  30. Pozrikidis, C.: Introduction to finite and spectral element methods using MATLAB Chapman & hall/CRC (2005)

  31. Qiu, W., Shi, K.: An HDG method for convection diffusion equation. J. Sci. Comput. 66, 346–357 (2016)

    Article  MathSciNet  Google Scholar 

  32. Samson, M.D., Li, H., Wang, L.-L.: A new triangular spectral element method i: implementation and analysis on a triangle. Numer. Algorithms 64, 519–547 (2013)

    Article  MathSciNet  Google Scholar 

  33. Shan, W., Li, H.: The triangular spectral element method for Stokes eigenvalues. Math. Comp. 86, 2579–2611 (2017)

    Article  MathSciNet  Google Scholar 

  34. Shen, J., Wang, L.-L., Li, H.: A triangular spectral element method using fully tensorial rational basis functions. SIAM J. Numer. Anal. 47, 1619–1650 (2009)

    Article  MathSciNet  Google Scholar 

  35. Sherwin, S.J., Karniadakis, G.E.: A new triangular and tetrahedral basis for high-order (hp) finite element methods. Int. J. Numer. Meth. Eng. 38, 3775–3802 (1995)

    Article  MathSciNet  Google Scholar 

  36. Taylor, M.A., Wingate, B.A., Vincent, R.E.: An algorithm for computing Fekete points in the triangle. SIAM J. Numer. Anal. 38, 1707–1720 (2000)

    Article  MathSciNet  Google Scholar 

  37. Zhou, B., Wang, B., Wang, L.-L., Xie, Z.: A new triangular spectral element method II: Mixed formulation and hp-error estimates. Numer. Math. Theor. Meth. Appl. 12, 72–97 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first and second authors received financial support provided by NSFC (grant 11771137, 12022104) and the Construct Program of the Key Discipline in Hunan Province. The research of the first author is partially supported by Hunan Provincial Innovation Foundation for Postgraduate (grant CX20190337). The research of the third author is supported by the Ministry of Education, Singapore, under its MOE AcRF Tier 2 Grants (MOE2018-T2-1-059 and MOE2017-T2-2-144). The fourth author is partially supported by NSFC (11771138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Data availability

The datasets supporting the conclusions of this article are included within the article.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Wang, B., Wang, LL. et al. A hybridizable discontinuous triangular spectral element method on unstructured meshes and its hp-error estimates. Numer Algor 91, 1231–1260 (2022). https://doi.org/10.1007/s11075-022-01300-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01300-3

Keywords

Mathematics Subject Classification (2010)

Navigation