Skip to main content
Log in

On the randomized Euler schemes for ODEs under inexact information

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We analyse errors of randomized explicit and implicit Euler schemes for approximate solving of ordinary differential equations (ODEs). We consider classes of ODEs for which the right-hand side functions satisfy Lipschitz condition globally or only locally. Moreover, we assume that only inexact discrete information, corrupted by some noise, about the right-hand side function is available. Optimality and stability of explicit and implicit randomized Euler algorithms are also investigated. Finally, we report the results of numerical experiments which support our theoretical conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and analysed during this study are available from the corresponding author on a reasonable request.

References

  1. Bochacik, T., Goćwin, M., Morkisz, P.M., Przybyłowicz, P.: Randomized Runge-Kutta method – Stability and convergence under inexact information. J. Complex. 65, 101554 (2021)

    Article  MathSciNet  Google Scholar 

  2. Daun, T.: On the randomized solution of initial value problems. J. Complex. 27, 300–311 (2011)

    Article  MathSciNet  Google Scholar 

  3. Eisenmann, M., Kovács, M., Kruse, R., Larsson, S.: On a randomized backward Euler method for nonlinear evolution equations with time-irregular coefficients. Found Comp. Math. 19, 1387–1430 (2019)

    Article  MathSciNet  Google Scholar 

  4. Heinrich, S.: Complexity of initial value problems in Banach spaces. Zh. Mat. Fiz. Anal. Geom. 9, 73–101 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Heinrich, S., Milla, B.: The randomized complexity of initial value problems. J. Complex. 24, 77–88 (2008)

    Article  MathSciNet  Google Scholar 

  6. Jentzen, A., Neuenkirch, A.: A random Euler scheme for carathéodory differential equations. J. Comp. Appl. Math. 224, 346–359 (2009)

    Article  Google Scholar 

  7. Kacewicz, B.: Almost optimal solution of initial-value problems by randomized and quantum algorithms. J. Complex. 22, 676–690 (2006)

    Article  MathSciNet  Google Scholar 

  8. Kałuża, A., Morkisz, P.M., Przybyłowicz, P.: Optimal approximation of stochastic integrals in analytic noise model. Appl. Math Comput. 356, 74–91 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Kruse, R., Wu, Y.: Error analysis of randomized Runge–Kutta methods for differential equations with time-irregular coefficients. Comput. Methods Appl. Math. 17, 479–498 (2017)

    Article  MathSciNet  Google Scholar 

  10. Morkisz, P.M., Plaskota, L.: Approximation of piecewise hölder functions from inexact information. J. Complex. 32, 122–136 (2016)

    Article  Google Scholar 

  11. Morkisz, P.M., Plaskota, L.: Complexity of approximating Hölder classes from information with varying Gaussian noise. J. Complex. 60, 101497 (2020)

    Article  Google Scholar 

  12. Morkisz, P.M., Przybyłowicz, P.: Optimal pointwise approximation of SDE’s from inexact information. J. Comp. Appl. Math. 324, 85–100 (2017)

    Article  MathSciNet  Google Scholar 

  13. Morkisz, P.M., Przybyłowicz, P.: Randomized derivative-free Milstein algorithm for efficient approximation of solutions of SDEs under noisy information. J. Comp. Appl. Math. 383, 113112 (2021)

    Article  MathSciNet  Google Scholar 

  14. Novak, E.: Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics, vol New York, Springer–Verlag (1349)

  15. Parthasarathy, K.R.: Probability Measures on Metric Spaces. AMS Chelsea Publishing (2005)

  16. Stengle, G.: Numerical methods for systems with measurable coefficients. Appl. Math. Lett. 3, 25–29 (1990)

    Article  MathSciNet  Google Scholar 

  17. Stengle, G.: Error analysis of a randomized numerical method. Numer. Math. 70, 119–128 (1995)

    Article  MathSciNet  Google Scholar 

  18. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic Press, New York (1988)

    MATH  Google Scholar 

  19. Werschulz, A.G.: The complexity of definite elliptic problems with noisy data. J. Complex. 12, 440–473 (1996)

    Article  MathSciNet  Google Scholar 

  20. Werschulz, A.G.: The complexity of indefinite elliptic problems with noisy data. J. Complex. 13, 457–479 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous reviewers for many valuable comments and suggestions that allowed us to improve the quality of the paper.

Funding

This research was partly supported by the National Science Centre, Poland, under project 2017/25/B/ST1/00945.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Bochacik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The following lemma can be proven in the same fashion as Lemma 1(i) in [1].

Lemma 2

Let \((\eta ,f)\in F^{{\varrho }}_{R_{2}}\), where

$$ R_{2} = K(1+b-a)e^{K(b-a)} + K. $$
(41)

Then

  • (1) has a unique solution z = z(η, f) such that \(z\in \mathcal {C}^{1}\left ([a,b]\times \mathbb {R}^{d}\right )\) and z(t) ∈ B(η, R2) for all t ∈ [a, b];

  • there exist \(C_{1} = C_{1}(a,b,K)\in (0,\infty )\) and \(C_{2} = C_{2}(a,b,K,L)\in (0,\infty )\) such that for all t ∈ [a, b]

    $$ \|z(t)-z(s)\| \leq C_{1} |t-s|, $$
    (42)
    $$ \left\|z^{\prime}(t)-z^{\prime}(s)\right\| \leq C_{2}|t-s|^{{\varrho}}. $$
    (43)

Next lemma is used to show existence and uniqueness of a measurable solution to the implicit randomized Euler scheme. Its proof can be found in [3] (Lemma 4.3).

Lemma 3

Let \(\tilde {\mathcal {F}}\) be a complete sub σ-algebra of the σ-algebra Σ, \(M \in \tilde {\mathcal {F}}\) with \(\mathbb {P}\left (M\right ) = 1\) and \(h\colon {\varOmega }\times \mathbb {R}^{d} \to \mathbb {R}^{d}\) such that the following conditions are fulfilled.

  • The mapping xh(ω, x) is continuous for every ωM.

  • The mapping ωh(ω, x) is \(\tilde {\mathcal {F}}\)-measurable for every \(x\in \mathbb {R}^{d}\).

  • For every ωM there exists a unique root of the function h(ω,⋅).

Define the mapping

$$Q\colon {\varOmega} \ni \omega \mapsto Q(\omega) \in \mathbb{R}^{d},$$

where Q(ω) is the unique root of h(ω,⋅) for ωM and Q(ω) is arbitrary for ωΩM.

Then Q is \(\tilde {\mathcal {F}}\)-measurable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochacik, T., Przybyłowicz, P. On the randomized Euler schemes for ODEs under inexact information. Numer Algor 91, 1205–1229 (2022). https://doi.org/10.1007/s11075-022-01299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01299-7

Keywords

Mathematics Subject Classification (2010)

Navigation