Skip to main content
Log in

An efficient arc-search interior-point algorithm for convex quadratic programming with box constraints

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper proposes an arc-search interior-point algorithm for convex quadratic programming with box constraints. The problem has many applications, such as optimal control with actuator saturation. It is shown that an explicit feasible starting point exists for this problem. Therefore, an efficient feasible interior-point algorithm is proposed to tackle the problem. It is proved that the proposed algorithm is polynomial and has the best known complexity bound \(O(\sqrt {n}\log (1/\epsilon ))\). Moreover, the search neighborhood for this special problem is wider than an algorithm for general convex quadratic programming problems, which implies that longer steps and faster convergence are expected. Finally, an engineering design problem is considered and the algorithm is applied to solve the engineering problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Berkelaar, A. B., Roos, K., Terlaky, T.: The optimal set and optimal partition approach to linear and quadratic programming. In: Recent Advances in Sensitivity Analysis and Parametric Programming. Kluwer Publishers, Berlin (1997)

  2. Bertsekas, D.P.: Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20, 221–246 (1982)

    Article  MathSciNet  Google Scholar 

  3. Cartis, C.: Some disadvantages of a Mehrotra-type primal-dual corrector interior-point algorithm for linear programming. Appl. Numer. Math. 59, 1110–1119 (2009)

    Article  MathSciNet  Google Scholar 

  4. Cartis, C., Gould, N.I.M.: Finding a Point in the Relative Interior of a Polyhedren. Oxford. Technical Report. Computing Laboratory, Oxford University (2007)

  5. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, New Jersey (1976)

    MATH  Google Scholar 

  6. Goldman, A.J., Tucker, A.W.: Theory of linear programming. In: Linear Equalities and Related Systems, pp 53–97. Princeton University Press, Princeton (1956)

  7. Guler, O., Ye, Y.: Convergence behavior of interior-point algorithms. Math. Program. 60, 215–228 (1993)

    Article  MathSciNet  Google Scholar 

  8. Han, C. G., Pardalos, P., Ye, Y: Computational aspects of an interior point algorithm for quadratic programming problem with box constraints. In: Large-Scale Numerical Optimization, pp 92–112. SIAM Publications, Philadelphia (1990)

  9. Herbison-Evans, D.: Solving quartics and cubics for graphics. Technical Report, Basser Department of Computer Science, University of Sydney. Sydney, Australia (1994)

  10. Kheirfam, B.: An arc-search infeasible interior point algorithm for HLCP in the \(N_{\infty }\)-neighborhood of the central path. Int. J. Comput. Math. 94(12), 2271–2282 (2017)

    Article  MathSciNet  Google Scholar 

  11. Kheirfam, B.: A polynomial-iteration infeasible interior-point algorithm with arc-search for semidefinite optimization. J. Sci. Comput. 88(3), 1–23 (2021)

    Article  MathSciNet  Google Scholar 

  12. Kheirfam, B., Moslemi, M.: On the extend of an arc-search interior-point algorithm for semidefinite optimization. Numer. Algebra Control Optim. 2, 261–275 (2018)

    Article  Google Scholar 

  13. Kheirfam, B., Osmanpour, N., Keyanpour, M.: An arc-search infeasible interior-point method for semidefinite optimization with the negative infinity neighborhood. Numer. Algor. 88(1), 143–163 (2021)

    Article  MathSciNet  Google Scholar 

  14. Lustig, I., Marsten, II., Shannon, D.: Computational experience with a primal-dual interior-point method for linear programming. Linear Algebra Applic. 152, 191–222 (1991)

    Article  MathSciNet  Google Scholar 

  15. Lustig, I., Marsten, R., Shannon, D.: On implementing Mehrotra’s predictor-corrector interior-point method for linear programming. SIAM J. Optim. 2, 432–449 (1992)

    Article  MathSciNet  Google Scholar 

  16. Mansouri, H., Pirhaji, M., Zangiabadi, M.: An arc search infeasible interior-point algorithm for symmetric optimization using a new wide neighborhood. Acta Applicandae Mathematicae 157(1), 75–91 (2018)

    Article  MathSciNet  Google Scholar 

  17. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2, 575–601 (1992)

    Article  MathSciNet  Google Scholar 

  18. Mizuno, S., Todd, M., Ye, Y.: On adaptive step primal-dual interior-point algorithms for linear programming. Math. Oper. Res. 18, 964–981 (1993)

    Article  MathSciNet  Google Scholar 

  19. Monteiro, R., Adler, I.: Interior path following primal-dual algorithms. Part I: Linear Program. Math. Program. 44, 27–41 (1989)

    MathSciNet  MATH  Google Scholar 

  20. Monteiro, R., Adler, I, Resende, M.G.C.: A polynomial-time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extension. Math. Oper. Res. 15, 191–214 (1990)

    Article  MathSciNet  Google Scholar 

  21. Polyanin, A.D., Manzhirov, A.V.: Handbook of Mathematics for Engineers and Scientists. Boca Raton, Chapman & Hall/CRC (2007)

    MATH  Google Scholar 

  22. Shahraki, M.S., Mansouri, H., Zangiabadi, M.: A wide neighborhood infeasible-interior-point method with arc-search for-SCLCPs. Optimization 67, 409–425 (2018)

    Article  MathSciNet  Google Scholar 

  23. Wright, S.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)

    Book  Google Scholar 

  24. Yang, X., Liu, H., Zhang, Y.: An arc-search infeasible-interior-point method for symmetric optimization in a wide neighborhood of the central path. Optim. Lett. 11(1), 135–152 (2017)

    Article  MathSciNet  Google Scholar 

  25. Yang, X., Zhang, Y., Liu, H.: A wide neighborhood infeasible-interior-point method with arc-search for linear programming. J. Appl. Math. Comput. 51(1–2), 209–225 (2016)

    Article  MathSciNet  Google Scholar 

  26. Yang, Y.: A polynomial arc-search interior-point algorithm for linear programming. J. Optim. Theory Applic. 158, 859–873 (2013)

    Article  MathSciNet  Google Scholar 

  27. Yang, Y.: A polynomial arc-search interior-point algorithm for convex quadratic programming. Europ. J. Oper. Res. 215, 25–38 (2011)

    Article  MathSciNet  Google Scholar 

  28. Yang, Y.: CurveLP-a MATLAB implementation of an infeasible interior-point algorithm for linear programming. Numer. Algor. 74(4), 967–996 (2017)

    Article  MathSciNet  Google Scholar 

  29. Yang, Y.: Two computationally efficient polynomial-iteration infeasible interior-point algorithms for linear programming. Numer. Algor. 79, 957–992 (2018)

    Article  MathSciNet  Google Scholar 

  30. Yang, Y.: Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Approach. CRC Press, Boca Raton (2020)

    Google Scholar 

  31. Yang, Y.: Arc-Search Techniques for Interior-Point Methods. CRC Press, Boca Raton (2020)

    Book  Google Scholar 

  32. Yang, Y., Yamashita, M.: An arc-search O(nL) infeasible-interior-point algorithm for linear programming. Optim. Lett. 12, 781–798 (2018)

    Article  MathSciNet  Google Scholar 

  33. Zhang, M., Yuan, B., Zhou, Y., Luo, X., Huang, Z.: A primal-dual interior-point algorithm with arc-search for semidefinite programming. Optim. Lett. 13, 1157–1175 (2019)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Y.: Solving Large-Scale Linear Programs by Interior-Point Methods Under the MATLAB Environment. Baltimore County, Technical Report, Department of Mathematics and Statistics, University of Maryland (1996)

Download references

Acknowledgements

The author would like to thank anonymous reviewers for their helpful suggestions that lead to the improvement in the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaguang Yang.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: : Proofs of technical lemmas

Appendix: : Proofs of technical lemmas

Proof Proof of Lemma 4.2

From (16), we have \(\dot {x}^{\mathrm {T}} (\dot {\gamma }-\dot {\lambda })= \dot {z}^{\mathrm {T}} \dot {\gamma }+ \dot {y}^{\mathrm {T}} \dot {\lambda } =\dot {p}^{\mathrm {T}} \dot {\omega }\), \(\ddot {x}^{\mathrm {T}} (\ddot {\gamma }-\ddot {\lambda })= \ddot {z}^{\mathrm {T}} \ddot {\gamma }+ \ddot {y}^{\mathrm {T}} \ddot {\lambda } =\ddot {p}^{\mathrm {T}} \ddot {\omega }\), \(\ddot {x}^{\mathrm {T}} (\dot {\gamma }-\dot {\lambda })=\ddot {p}^{\mathrm {T}} \dot {\omega }\), and \(\dot {x}^{\mathrm {T}} (\ddot {\gamma }-\ddot {\lambda })=\dot {p}^{\mathrm {T}} \ddot {\omega }\). Pre-multiplying \(\dot {x}^{\mathrm {T}}\) and \(\ddot {x}^{\mathrm {T}}\) to (15) gives

$$ \dot{x}^{\mathrm{T}} (\dot{\gamma}-\dot{\lambda}) =\dot{x}^{\mathrm{T}} H \dot{x}, $$
$$ \ddot{x}^{\mathrm{T}} (\ddot{\gamma}-\ddot{\lambda})=\ddot{x}^{\mathrm{T}} H \ddot{x}, $$
$$ \ddot{x}^{\mathrm{T}} (\dot{\gamma}-\dot{\lambda})=\ddot{x}^{\mathrm{T}} H \dot{x} = \dot{x}^{\mathrm{T}} H \ddot{x} =\dot{x}^{\mathrm{T}} (\ddot{\gamma}-\ddot{\lambda}). $$

Equations (27) and (28) follow from the first two equations and the fact that H is positive definite. The last equation gives (29). Using (27), (28), and (29) gives

$$ \begin{array}{@{}rcl@{}} & & (\dot{x}(1-\cos(\alpha))+ \ddot{x}\sin(\alpha))^{\mathrm{T}}H (\dot{x}(1-\cos(\alpha))+ \ddot{x}\sin(\alpha)) \\ & = & (\dot{x}^{\mathrm{T}} H \dot{x})(1-\cos(\alpha))^{2} +2(\dot{x}^{\mathrm{T}} H \ddot{x})\sin(\alpha)(1-\cos(\alpha)) +(\ddot{x}^{\mathrm{T}} H\ddot{x}) \sin^{2}(\alpha) \\ & = & (\dot{x}^{\mathrm{T}} H \dot{x})(1-\cos(\alpha))^{2} +(\ddot{x}^{\mathrm{T}} H \ddot{x}) \sin^{2}(\alpha) + (\ddot{x}^{\mathrm{T}} (\dot{\gamma}-\dot{\lambda})+\dot{x}^{\mathrm{T}} (\ddot{\gamma}-\ddot{\lambda}) ) \sin(\alpha) (1-\cos(\alpha)) \ge 0, \end{array} $$

which is the first inequality of (30). Using (27), (28), and (29) also gives

$$ \begin{array}{@{}rcl@{}} & & (\dot{x}(1-\cos(\alpha))- \ddot{x}\sin(\alpha))^{\mathrm{T}}H (\dot{x}(1-\cos(\alpha))- \ddot{x}\sin(\alpha)) \\ & = & (\dot{x}^{\mathrm{T}} H \dot{x})(1-\cos(\alpha))^{2} -2(\dot{x}^{\mathrm{T}} H \ddot{x})\sin(\alpha)(1-\cos(\alpha)) +(\ddot{x}^{\mathrm{T}} H\ddot{x}) \sin^{2}(\alpha) \\ & = & (\dot{x}^{\mathrm{T}} H \dot{x})(1-\cos(\alpha))^{2} +(\ddot{x}^{\mathrm{T}} H\ddot{x}) \sin^{2}(\alpha) - (\ddot{x}^{\mathrm{T}} (\dot{\gamma}-\dot{\lambda})+\dot{x}^{\mathrm{T}} (\ddot{\gamma}-\ddot{\lambda}) ) \sin(\alpha) (1-\cos(\alpha)) \ge 0, \end{array} $$

which is the second inequality of (30). Replacing \(\dot {x}(1-\cos \limits (\alpha ))\) and \(\ddot {x}\sin \limits (\alpha )\) by \(\dot {x}\sin \limits (\alpha )\) and \(\ddot {x}(1-\cos \limits (\alpha ))\), and following the same method, we can obtain (31). □

Proof Proof of Lemma 4.3

From the last two rows of (13) or equivalently (17), we have

$$ \begin{array}{@{}rcl@{}} {\Lambda} \dot{y}+Y \dot{\lambda} = {\Lambda} Y e \\ {\Gamma} \dot{z}+Z \dot{\gamma} = {\Gamma} Z e. \end{array} $$

Pre-multiplying \(Y^{-\frac {1}{2}}{\Lambda }^{-\frac {1}{2}}\) on both sides of the first equality gives

$$ \begin{array}{@{}rcl@{}} Y^{-\frac{1}{2}}{\Lambda}^{\frac{1}{2}}\dot{y} + Y^{\frac{1}{2}}{\Lambda}^{-\frac{1}{2}}\dot{\lambda}=Y^{\frac{1}{2}}{\Lambda}^{\frac{1}{2}}e. \end{array} $$

Pre-multiplying \(Z^{-\frac {1}{2}}{\Gamma }^{-\frac {1}{2}}\) on both sides of the second equality gives

$$ \begin{array}{@{}rcl@{}} Z^{-\frac{1}{2}}{\Gamma}^{\frac{1}{2}}\dot{z} + Z^{\frac{1}{2}}{\Gamma}^{-\frac{1}{2}}\dot{\gamma}=Z^{\frac{1}{2}}{\Gamma}^{\frac{1}{2}}e. \end{array} $$
(79)

Let \(u=\left [ \begin {array}{c} Y^{-\frac {1}{2}}{\Lambda }^{\frac {1}{2}}\dot {y} \\ Z^{-\frac {1}{2}}{\Gamma }^{\frac {1}{2}}\dot {z} \end {array} \right ]\), \(v=\left [ \begin {array}{c} Y^{\frac {1}{2}}{\Lambda }^{-\frac {1}{2}}\dot {\lambda } \\ Z^{\frac {1}{2}}{\Gamma }^{-\frac {1}{2}}\dot {\gamma } \end {array} \right ]\), and \(w=\left [ \begin {array}{c} Y^{\frac {1}{2}}{\Lambda }^{\frac {1}{2}}e \\ Z^{\frac {1}{2}}{\Gamma }^{\frac {1}{2}}e \end {array} \right ]\), and using (16) andLemma 4.2, we have \(u^{\mathrm {T}}v =\dot {y}^{\mathrm {T}} \dot {\lambda } + \dot {z}^{\mathrm {T}} \dot {\gamma } = \dot {x}^{\mathrm {T}} (\dot {\gamma }-\dot {\lambda }) \ge 0\). Using Lemma 4.3 and (9), we have

$$ \|u\|^{2} + \|v\|^{2}={\sum}_{i=1}^{n} \left( \frac{\dot{y}_{i}^{2}\lambda_{i}}{y_{i}} +\frac{\dot{z}_{i}^{2}\gamma_{i}}{z_{i}} \right) + {\sum}_{i=1}^{n} \left( \frac{\dot{\lambda}_{i}^{2}y_{i}}{\lambda_{i}} + \frac{\dot{\gamma}_{i}^{2}z_{i}}{\gamma_{i}} \right) \le {\sum}_{i=1}^{n} \left( y_{i} \lambda_{i} + z_{i} \gamma_{i} \right) = {\sum}_{i=1}^{2n} p_{i} \omega_{i} = 2n\mu. $$

Since pi > 0 and ωi > 0, dividing both sides of the inequality by \(\min \limits _{j} p_{i} \omega _{i}\) and using (11) gives

$$ {\sum}_{i=1}^{n} \left( \frac{\dot{y}_{i}^{2}}{{y_{i}^{2}}} +\frac{\dot{z}_{i}^{2}}{{z_{i}^{2}}} \right) + {\sum}_{i=1}^{n} \left( \frac{\dot{\gamma}_{i}^{2}}{{\gamma_{i}^{2}}} +\frac{\dot{\lambda}_{i}^{2}}{{\lambda_{i}^{2}}} \right) = \Bigl\lVert \frac{\dot{p}}{p} \Bigr\rVert^{2} + \Bigl\lVert \frac{\dot{\omega}}{\omega} \Bigr\rVert^{2} \le \frac{2n\mu}{\min_{j} p_{i}\omega_{i}} \le \frac{2n}{1-\theta}. $$
(80)

This proves (33). Combining (33) and Lemma 4.1 yields

$$ \Bigl\lVert \frac{{\dot{p}}}{p} \Bigr\rVert^{2} \Bigl\lVert \frac{{\dot{\omega}}}{\omega} \Bigr\rVert^{2} \le \left( \frac{n}{(1-\theta)} \right)^{2}. $$

This leads to

$$ \Bigl\lVert \frac{{\dot{p}}}{{p}} \Bigr\rVert \Bigl\lVert \frac{{\dot{\omega}}}{\omega} \Bigr\rVert \le \frac{n}{(1-\theta)}. $$
(81)

Therefore, using (11) and Cauchy-Schwarz inequality yields

$$ \frac{\dot{p}^{\mathrm{T}} \dot{\omega}} {\mu} \le \frac{|\dot{p}|^{\mathrm{T}} |\dot{\omega}|} {\mu} \le (1+\theta)\frac{|\dot{p}|^{\mathrm{T}} |\dot{\omega}|}{\max_{i} p_{i}\omega_{i}} \le (1+\theta) \left( \frac{|\dot{p}|}{p} \right)^{\mathrm{T}} \left( \frac{|\dot{\omega}|}{\omega}\right) \le (1+\theta) \Bigl\lVert \frac{{\dot{p}}}{p} \Bigr\rVert \Bigl\lVert \frac{{\dot{\omega}}}{\omega} \Bigr\rVert \le \frac{1+\theta}{1-\theta}n, $$
(82)

which is the second inequality of (35). From Lemma 4.2, \(\dot {p}^{\mathrm {T}} \dot {\omega } = \dot {x}^{\mathrm {T}} (\dot {\gamma }-\dot {\lambda }) = \dot {x}^{\mathrm {T}}H \dot {x} \ge 0\), we have the first inequality of (35).□

Proof Proof of Lemma 4.4

Similar to the proof of Lemma 4.3, from (18), we have

$$ \begin{array}{@{}rcl@{}} & & {\Lambda} \ddot{y}+Y \ddot{\lambda} =-2\left( \dot{y} \circ \dot{\lambda}\right) \\ & \Longleftrightarrow & Y^{-\frac{1}{2}}{\Lambda}^{\frac{1}{2}}\ddot{y} + Y^{\frac{1}{2}}{\Lambda}^{-\frac{1}{2}}\ddot{\lambda}=-2Y^{-\frac{1}{2}}{\Lambda}^{-\frac{1}{2}} \left( \dot{y} \circ \dot{\lambda} \right), \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} & & {\Gamma} \ddot{z}+Z \ddot{\gamma} =-2 \left( \dot{z} \circ \dot{\gamma} \right) \\ & \Longleftrightarrow & Z^{-\frac{1}{2}}{\Gamma}^{\frac{1}{2}}\ddot{z} + Z^{\frac{1}{2}}{\Gamma}^{-\frac{1}{2}}\ddot{\gamma}=-2Z^{-\frac{1}{2}}{\Gamma}^{-\frac{1}{2}} \left( \dot{z} \circ \dot{\gamma} \right). \end{array} $$

Let \(u=\left [ \begin {array}{c} Y^{-\frac {1}{2}}{\Lambda }^{\frac {1}{2}}\ddot {y} \\ Z^{-\frac {1}{2}}{\Gamma }^{\frac {1}{2}}\ddot {z} \end {array} \right ]\), \(v=\left [ \begin {array}{c} Y^{\frac {1}{2}}{\Lambda }^{-\frac {1}{2}}\ddot {\lambda } \\ Z^{\frac {1}{2}}{\Gamma }^{-\frac {1}{2}}\ddot {\gamma } \end {array} \right ]\), and \(w=\left [ \begin {array}{c} -2Y^{-\frac {1}{2}}{\Lambda }^{-\frac {1}{2}} \left (\dot {y} \circ \dot {\lambda } \right ) \\ -2Z^{-\frac {1}{2}}{\Gamma }^{-\frac {1}{2}} \left (\dot {z} \circ \dot {\gamma } \right ) \end {array} \right ]\), using (16) and Lemma 4.2, we have \(u^{\mathrm {T}}v = \ddot {y}^{\mathrm {T}} \ddot {\lambda } + \ddot {z}^{\mathrm {T}} \ddot {\gamma } = \ddot {x}^{\mathrm {T}} (\ddot {\gamma }-\ddot {\lambda }) \ge 0\). Using Lemma 4.3, we have

$$ \begin{array}{@{}rcl@{}} \|u\|^{2} + \|v\|^{2} & = & {\sum}_{i=1}^{n} \left( \frac{\ddot{y}_{i}^{2}\lambda_{i}}{y_{i}} + \frac{\ddot{z}_{i}^{2}\gamma_{i}}{z_{i}} \right) + {\sum}_{i=1}^{n} \left( \frac{\ddot{\lambda}_{i}^{2}y_{i}}{\lambda_{i}} + \frac{\ddot{\gamma}_{i}^{2} z_{i}}{\gamma_{i}} \right) \\ & \le & \Bigl\lVert -2Y^{-\frac{1}{2}}{\Lambda}^{-\frac{1}{2}} \left( \dot{y} \circ \dot{\lambda} \right) \Bigr\rVert^{2} + \Bigl\lVert -2Z^{-\frac{1}{2}}{\Gamma}^{-\frac{1}{2}} \left( \dot{z} \circ \dot{\gamma} \right) \Bigr\rVert^{2} \\ & = & 4{\sum}_{i=1}^{n} \left( \frac{{\dot{y}_{i}^{2}}}{y_{i}} \frac{{\dot{\lambda}_{i}^{2}}}{{\lambda_{i}}} + \frac{{\dot{z}_{i}^{2}}}{z_{i}} \frac{{\dot{\gamma}_{i}^{2}}}{{\gamma_{i}}} \right). \end{array} $$

Dividing both sides of the inequality by μ and using (11) gives

$$ \begin{array}{@{}rcl@{}} & & (1-\theta) \left( {\sum}_{i=1}^{n} \left( \frac{\ddot{y}_{i}^{2}}{{y_{i}^{2}}} + \frac{\ddot{z}_{i}^{2}}{{z_{i}^{2}}} \right) + {\sum}_{i=1}^{n} \left( \frac{\ddot{\lambda}_{i}^{2}}{{\lambda_{i}^{2}}} +\frac{\ddot{\gamma}_{i}^{2}}{{\gamma_{i}^{2}}} \right) \right) \\ & = & (1-\theta) \left( \Bigl\lVert \frac{{\ddot{p}}}{p} \Bigr\rVert^{2} +\Bigl\lVert \frac{{\ddot{\omega}}}{\omega} \Bigr\rVert^{2} \right) \\ & \le & 4(1+\theta) \left( {\sum}_{i=1}^{n} \left( \frac{{\dot{y}_{i}^{2}}}{{{y_{i}^{2}}}}\frac{{\dot{\lambda}_{i}^{2}}}{{{\lambda_{i}^{2}}}} + \frac{{\dot{z}_{i}^{2}}}{{{z_{i}^{2}}}}\frac{{\dot{\gamma}_{i}^{2}}}{{\gamma_{i}^{2}}} \right) \right), \end{array} $$

in view of Lemma 4.3, this leads to

$$ \Bigl\lVert \frac{\ddot{p}}{p} \Bigr\rVert^{2} + \Bigl\lVert \frac{\ddot{\omega}}{\omega} \Bigr\rVert^{2} \le 4 \frac{1+\theta}{1-\theta} \Bigl\lVert \frac{\dot{p}}{p} \circ \frac{\dot{\omega}}{\omega} \Bigr\rVert^{2} \le 4 \frac{1+\theta}{1-\theta} \Bigl\lVert \frac{\dot{p}}{p} \Bigr\rVert^{2} \Bigl\lVert \frac{\dot{\omega}}{\omega} \Bigr\rVert^{2} \le \frac{4(1+\theta)n^{2}}{(1-\theta)^{3}}. $$
(83)

This proves (36). Combining (36) and Lemma 4.1 yields

$$ \Bigl\lVert \frac{\ddot{p}}{p} \Bigr\rVert^{2} \Bigl\lVert \frac{\ddot{\omega}}{\omega} \Bigr\rVert^{2} \le \left( \frac{2(1+\theta)n^{2}}{(1-\theta)^{3}} \right)^{2}. $$

Using (11) and Cauchy-Schwarz inequality yields

$$ \frac{\ddot{p}^{\mathrm{T}} \ddot{\omega}} {\mu} \le \frac{|\ddot{p}|^{\mathrm{T}} |\ddot{\omega}|} {\mu} \le (1+\theta)\frac{|\ddot{p}|^{\mathrm{T}} |\ddot{\omega}|}{\max_{i} p_{i}\omega_{i}} \le (1+\theta) \left( \frac{|\ddot{p}|}{p} \right)^{\mathrm{T}} \left( \frac{|\ddot{\omega}|}{\omega} \right) \le (1+\theta) \Bigl\lVert \frac{\ddot{p}}{p} \Bigr\rVert \Bigl\lVert \frac{\ddot{\omega}}{\omega} \Bigr\rVert \le \frac{2n^{2}(1+\theta)^{2}}{(1-\theta)^{3}}, $$

which is the second inequality of (38). Using (16) and Lemma 4.2, we have \(\ddot {p}^{\mathrm {T}} \ddot {\omega } = \ddot {y}^{\mathrm {T}} \ddot {\lambda }+ \ddot {z}^{\mathrm {T}} \ddot {\gamma } =\ddot {x}^{\mathrm {T}}(\ddot {\gamma }-\ddot {\lambda }) =\ddot {x}^{\mathrm {T}}H \ddot {x} \ge 0\). This proves the first inequality of (38). Finally, using (11), Cauchy-Schwarz inequality, (33), and (36) yields

$$ \begin{array}{@{}rcl@{}} \frac{\left| \dot{p}^{\mathrm{T}} \ddot{\omega} \right|} {\mu} \le \frac{|\dot{p}|^{\mathrm{T}} |\ddot{\omega}|} {\mu} \le (1+\theta)\frac{|\dot{p}|^{\mathrm{T}} |\ddot{\omega}|}{\max_{i} p_{i}\omega_{i}} \le (1+\theta) \left( \frac{|\dot{p}|}{p} \right)^{\mathrm{T}} \left( \frac{|\ddot{\omega}|}{\omega} \right) \\ \le (1+\theta) \Bigl\lVert \frac{\dot{p}}{p} \Bigr\rVert \Bigl\lVert \frac{\ddot{\omega}}{\omega} \Bigr\rVert \le (1+\theta) \left( \frac{2n}{1-\theta} \right)^{\frac{1}{2}} \left( \frac{4(1+\theta)n^{2}}{(1+\theta)^{3}} \right)^{\frac{1}{2}} \le \frac{(2n(1+\theta))^{\frac{3}{2}}}{(1-\theta)^{2}}. \end{array} $$

This proves the first inequality of (39). Replacing \(\dot {p}\) by \(\ddot {p}\) and \(\ddot {\omega }\) by \(\dot {\omega }\), then using the same reasoning, we can prove the second inequality of (39).□

Proof Proof of Lemma 4.5

Using (20), (22), (17), and (18), we have

$$ \begin{array}{@{}rcl@{}} && y^{\mathrm{T}}({\alpha})\lambda({\alpha}) \\ &= & \Big(y^{\mathrm{T}}-\dot{y}^{\mathrm{T}}\sin({\alpha})+\ddot{y}^{\mathrm{T}}(1-\cos({\alpha})) \Big) \Big(\lambda-\dot{\lambda}\sin({\alpha})+\ddot{\lambda}(1-\cos({\alpha})) \Big) \\ & = & y^{\mathrm{T}}\lambda-y^{\mathrm{T}}\dot{\lambda}\sin({\alpha}) +y^{\mathrm{T}}\ddot{\lambda}(1-\cos({\alpha})) \\ && -\dot{y}^{\mathrm{T}}\lambda \sin({\alpha})+\dot{y}^{\mathrm{T}}\dot{\lambda}\sin^{2}({\alpha}) -\dot{y}^{\mathrm{T}}\ddot{\lambda}\sin({\alpha})(1-\cos({\alpha})) \\ & & +\ddot{y}^{\mathrm{T}}{\lambda}(1-\cos({\alpha})) -\ddot{y}^{\mathrm{T}}\dot{\lambda}\sin({\alpha})(1-\cos({\alpha})) +\ddot{y}^{\mathrm{T}}\ddot{\lambda}(1-\cos({\alpha}))^{2} \\ & = & y^{\mathrm{T}}\lambda-(y^{\mathrm{T}}\dot{\lambda}+\lambda^{\mathrm{T}}\dot{y})\sin({\alpha}) + (y^{\mathrm{T}}\ddot{\lambda}+\lambda^{\mathrm{T}}\ddot{y})(1-\cos({\alpha})) \\ && - (\dot{y}^{\mathrm{T}}\ddot{\lambda}+\dot{\lambda}^{\mathrm{T}}\ddot{y})\sin({\alpha})(1-\cos({\alpha})) +\dot{y}^{\mathrm{T}}\dot{\lambda}\sin^{2}({\alpha})+\ddot{y}^{\mathrm{T}}\ddot{\lambda}(1-\cos({\alpha}))^{2} \\ & = & y^{\mathrm{T}}\lambda(1-\sin({\alpha})) -2\dot{y}^{\mathrm{T}}\dot{\lambda}(1-\cos({\alpha}))\\ && - (\dot{y}^{\mathrm{T}}\ddot{\lambda}+\dot{\lambda}^{\mathrm{T}}\ddot{y})\sin({\alpha})(1-\cos({\alpha}))\\ & & + \dot{y}^{\mathrm{T}}\dot{\lambda}(1-\cos^{2}({\alpha})) + \ddot{y}^{\mathrm{T}}\ddot{\lambda}(1-\cos({\alpha}))^{2} \\ & = & y^{\mathrm{T}}\lambda (1-\sin({\alpha}))+(\ddot{y}^{\mathrm{T}}\ddot{\lambda}-\dot{y}^{\mathrm{T}}\dot{\lambda}) (1-\cos({\alpha}))^{2} - (\dot{y}^{\mathrm{T}}\ddot{\lambda}+\dot{\lambda}^{\mathrm{T}}\ddot{y})\sin({\alpha})(1-\cos({\alpha})). \end{array} $$
(84)

Using (21), (23), (17), (18), and a similar derivation of (84), we have

$$ z^{\mathrm{T}}({\alpha})\gamma({\alpha})=z^{\mathrm{T}}\gamma (1-\sin({\alpha}))+ (\ddot{z}^{\mathrm{T}}\ddot{\gamma}-\dot{z}^{\mathrm{T}}\dot{\gamma})(1-\cos({\alpha}))^{2} - (\dot{z}^{\mathrm{T}}\ddot{\gamma}+\dot{\gamma}^{\mathrm{T}}\ddot{z})\sin({\alpha})(1-\cos({\alpha})). $$
(85)

Combining (84) and (85) gives

$$ \begin{array}{@{}rcl@{}} && {}2n\mu({\alpha}) =p^{\mathrm{T}}(\alpha) \omega(\alpha) \\ &= & y^{\mathrm{T}}({\alpha})\lambda({\alpha}) + z^{\mathrm{T}}({\alpha})\gamma({\alpha}) \\ &= & (y^{\mathrm{T}}\lambda+z^{\mathrm{T}}\gamma) (1-\sin({\alpha})) +(\ddot{y}^{\mathrm{T}}\ddot{\lambda}+\ddot{z}^{\mathrm{T}}\ddot{\gamma} -\dot{y}^{\mathrm{T}}\dot{\lambda}-\dot{z}^{\mathrm{T}}\dot{\gamma}) (1-\cos({\alpha}))^{2} \\ && -(\dot{y}^{\mathrm{T}} \ddot{\lambda}+\dot{z}^{\mathrm{T}} \ddot{\gamma} +\ddot{y}^{\mathrm{T}} \dot{\lambda}+\ddot{z}^{\mathrm{T}} \dot{\gamma})\sin(\alpha)(1-\cos({\alpha})) \\ &= & (y^{\mathrm{T}}\lambda+z^{\mathrm{T}}\gamma)(1-\sin({\alpha})) + (\ddot{x}^{\mathrm{T}}(\ddot{\gamma}-\ddot{\lambda}) -\dot{x}^{\mathrm{T}}(\dot{\gamma}-\dot{\lambda}))(1-\cos({\alpha}))^{2} {\kern3.9pc}\text{use (16)} \\ && -(\dot{x}^{\mathrm{T}} (\ddot{\gamma}-\ddot{\lambda}) +\ddot{x}^{\mathrm{T}} (\dot{\gamma}-\dot{\lambda}))\sin(\alpha)(1-\cos({\alpha})) \\ &\le & (y^{\mathrm{T}}\lambda+z^{\mathrm{T}}\gamma) \left( 1-\sin({\alpha}) \right) +(\ddot{x}^{\mathrm{T}} H \ddot{x}- \dot{x}^{\mathrm{T}} H \dot{x})(1-\cos({\alpha}))^{2}{\kern2pc}\text{use (30) in Lemma 4.2} \\ && + \dot{x}^{\mathrm{T}} H \dot{x}(1-\cos({\alpha}))^{2} + \ddot{x}^{\mathrm{T}} H \ddot{x}\sin^{2}(\alpha) \\ &= & (y^{\mathrm{T}}\lambda+z^{\mathrm{T}}\gamma) \left( 1-\sin({\alpha}) \right) + \ddot{x}^{\mathrm{T}} H \ddot{x} (1-\cos({\alpha}))^{2} + \ddot{x}^{\mathrm{T}} H \ddot{x}\sin^{2}(\alpha). \end{array} $$
(86)

Dividing both sides by 2n proves the second inequality of the lemma. Combining (86) and (31) proves the first inequality of the lemma.□□

Proof Proof of Lemma 4.6

From the second inequality of (40), we have

$$ \mu(\alpha) - \mu \le \mu \sin(\alpha) \left( -1 + \frac{\ddot{x}^{\mathrm{T}}H\ddot{x}}{2n\mu} \sin(\alpha) + \frac{\ddot{x}^{\mathrm{T}}H\ddot{x}}{2n\mu} \sin^{3}(\alpha) \right). $$

Clearly, if \(\frac {\ddot {x}^{\mathrm {T}}H\ddot {x}}{2n\mu } \le \frac {1}{2}\), for any \(\alpha \in [0, \frac {\pi }{2}]\), the function

$$ f(\alpha) := \left( -1 + \frac{\ddot{x}^{\mathrm{T}}H\ddot{x}}{2n\mu} \sin(\alpha) + \frac{\ddot{x}^{\mathrm{T}}H\ddot{x}}{2n\mu} \sin^{3}(\alpha) \right) \le 0, $$

and μ(α) ≤ μ. If \(\frac {\ddot {x}^{\mathrm {T}}H\ddot {x}}{2n\mu } > \frac {1}{2}\), using Lemma 2.5, the function f has one real solution \(\sin \limits (\alpha ) \in (0,1)\). The solution is given as

$$ \sin(\hat{\alpha}) = \sqrt[3]{\frac{n\mu}{\ddot{x}^{\mathrm{T}}H\ddot{x}} + \sqrt{\left( \frac{n\mu}{\ddot{x}^{\mathrm{T}}H\ddot{x}} \right)^{2} + \left( \frac{1}{3} \right)^{3} } } +\sqrt[3]{\frac{n\mu}{\ddot{x}^{\mathrm{T}}H\ddot{x}} - \sqrt{\left( \frac{n\mu}{\ddot{x}^{\mathrm{T}}H\ddot{x}} \right)^{2} + \left( \frac{1}{3} \right)^{3} } }. $$

This proves the Lemma.□

Proof Proof of Lemma 4.7

Since \(\sin \limits (\tilde {\alpha })\) is the only positive real solution of (42) in [0, 1] and q(0) < 0, substituting a0,a1,a2,a3, and a4 into (42), we have, for all \(\sin \limits (\alpha ) \le \sin \limits (\tilde {\alpha })\),

$$ \begin{array}{@{}rcl@{}} && \left( \Big\lVert \ddot{p} \circ \ddot{\omega}-\dot{\omega} \circ \dot{p} -\frac{1}{2n}(\ddot{p}^{\mathrm{T}}\ddot{\omega}-\dot{\omega}^{\mathrm{T}}\dot{p})e \Big\rVert \right) \sin^{4}(\alpha) +\left( \Big\lVert \dot{p} \circ \ddot{\omega}+\dot{\omega} \circ \ddot{p} -\frac{1}{2n}(\dot{p}^{\mathrm{T}}\ddot{\omega}+\dot{\omega}^{\mathrm{T}}\ddot{p})e \Big\rVert \right)\sin^{3}(\alpha) \\ &\le & - \left( 2\theta \frac{\dot{p}^{\mathrm{T}}\dot{\omega}}{2n} \right) \sin^{4}(\alpha) -\left( 2\theta \frac{\dot{p}^{\mathrm{T}}\dot{\omega}}{2n} \right)\sin^{2}(\alpha) +\theta \mu (1-\sin(\alpha)). \end{array} $$
(87)

Using (24), (25), (17), (18), (44), Lemma 2.2, (87), and the first inequality of (40), we have

$$ \begin{array}{@{}rcl@{}} && \Big\lVert p(\alpha) \circ \omega(\alpha) - \mu(\alpha) e \Big\rVert \\ &= & \Big\lVert \Big(p-\dot{p}\sin(\alpha) +\ddot{p} (1-\cos(\alpha)) \Big) \circ \Big(\omega-\dot{\omega}\sin(\alpha) +\ddot{\omega} (1-\cos(\alpha)) \Big) -\mu(\alpha) e \Big\rVert \\ &= & \Big\lVert (p \circ \omega - {\mu} e)(1-\sin(\alpha)) + \left( \ddot{p} \circ \ddot{\omega} -\dot{p} \circ \dot{\omega} - \frac{1}{2n}(\ddot{p}^{\mathrm{T}} \ddot{\omega} -\dot{p}^{\mathrm{T}} \dot{\omega})e \right) (1-\cos(\alpha))^{2} \\ && - \left( \dot{p} \circ \ddot{\omega}+\dot{\omega} \circ \ddot{p} - \frac{1}{2n}(\dot{p}^{\mathrm{T}} \ddot{\omega} +\ddot{p}^{\mathrm{T}} \dot{\omega})e \right) \sin(\alpha) (1-\cos(\alpha)) \Big\rVert\\ &\le & (1-\sin(\alpha))\Big\lVert {p} \circ {\omega} - {\mu} e \Big\rVert + \Big\lVert (\ddot{p} \circ \ddot{\omega}-\dot{p} \circ \dot{\omega} - \frac{1}{2n}(\ddot{p}^{\mathrm{T}} \ddot{\omega} -\dot{p}^{\mathrm{T}} \dot{\omega}) )e \Big\rVert (1-\cos(\alpha))^{2} \\ && + \Big\lVert (\dot{p} \circ \ddot{\omega}+\dot{\omega} \circ \ddot{p} - \frac{1}{2n}(\dot{p}^{\mathrm{T}} \ddot{\omega} +\ddot{p}^{\mathrm{T}} \dot{\omega})e \Big\rVert \sin(\alpha) (1-\cos(\alpha)) \end{array} $$
(88)
$$ \begin{array}{@{}rcl@{}} &\le & \theta {\mu} (1-\sin(\alpha)) + \Big\lVert (\ddot{p} \circ \ddot{\omega}-\dot{p} \circ \dot{\omega} - \frac{1}{2n}(\ddot{p}^{\mathrm{T}} \ddot{s} -\dot{p}^{\mathrm{T}} \dot{\omega}) )e \Big\rVert \sin^{4}(\alpha) +a_{3}\sin^{3}(\alpha) \\ &\le & 2 \theta \mu (1-\sin(\alpha))-\Big(2\theta \frac{\dot{p}^{\mathrm{T}} \dot{\omega}}{2n} \Big) (\sin^{4}(\alpha)+\sin^{2}(\alpha)) \\ &\le & 2 \theta \left( \mu (1-\sin(\alpha))-\Big(\frac{\dot{x}^{\mathrm{T}} H \dot{x}}{2n} \Big) \left( \left( 1-\cos(\alpha) \right)^{2}+\sin^{2}(\alpha) \right) \right) \\ &\le & 2 \theta \mu(\alpha). \end{array} $$
(89)

Hence, the point (x(α),p(α),ω(α)) satisfies the proximity condition for \(\mathcal {N}_{2}(2\theta )\). To check the positivity condition (p(α),ω(α)) > 0, note that the initial condition (p,ω) > 0. It follows from (89) and Corollary 4.1 that, for \(\sin \limits (\alpha ) \le \sin \limits (\bar {\alpha })\) and 𝜃 < 0.5,

$$ p_{i}(\alpha)\omega_{i}(\alpha) \ge (1-2\theta)\mu(\alpha) >0. $$
(90)

Therefore, we cannot have pi(α) = 0 or ωi(α) = 0 for any index i when \(\alpha \in [0, \sin \limits ^{-1}(\bar {\alpha })]\). This proves (p(α),ω(α)) > 0.□

Proof Proof of Lemma 4.6

Since

$$\Bigl\lVert \frac{\dot{p}}{p} \Bigr\rVert^{2} ={\sum}_{i=1}^{2n} \left( \frac{\dot{p_{i}}}{p_{i}} \right)^{2}, \Bigl\lVert \frac{\dot{\omega}}{\omega} \Bigr\rVert^{2} ={\sum}_{i=1}^{2n} \left( \frac{\dot{\omega_{i}}}{\omega_{i}} \right)^{2}, $$

from Lemma 4.3 and (11), we have

$$ \begin{array}{@{}rcl@{}} & & \left( \frac{n}{1-\theta} \right)^{2} \\ & \ge & \Bigl\lVert \frac{{\dot{p}}}{p} \Bigr\rVert^{2} \Bigl\lVert \frac{\dot{\omega}}{\omega} \Bigr\rVert^{2} =\left( {\sum}_{i=1}^{2n} \left( \frac{\dot{p_{i}}}{p_{i}} \right)^{2} \right) \left( {\sum}_{i=1}^{2n} \left( \frac{\dot{\omega_{i}}}{\omega_{i}} \right)^{2} \right) \\ & \ge & {\sum}_{i=1}^{2n} \left( \frac{\dot{p_{i}}}{p_{i}} \frac{\dot{\omega_{i}}}{\omega_{i}} \right)^{2} =\Bigl\lVert \frac{\dot{p}}{p} \circ \frac{\dot{\omega}}{\omega} \Bigr\rVert^{2} \\ & \ge & {\sum}_{i=1}^{2n} \left( \frac{\dot{p_{i}}\dot{\omega_{i}}}{(1+\theta) \mu} \right)^{2} =\frac{1}{(1+\theta)^{2} \mu^{2}}\Bigl\lVert \dot{p} \circ \dot{\omega} \Bigr\rVert^{2}, \end{array} $$

i.e.,

$$ \Bigl\lVert \dot{p} \circ \dot{\omega} \Bigr\rVert^{2} \le \left( \frac{1+\theta}{1-\theta} n \mu \right)^{2} $$

This proves (45). Using

$$\Bigl\lVert \frac{\ddot{p}}{p} \Bigr\rVert^{2} ={\sum}_{i=1}^{2n} \left( \frac{\ddot{p_{i}}}{p_{i}} \right)^{2}, \Bigl\lVert \frac{\ddot{\omega}}{\omega} \Bigr\rVert^{2} ={\sum}_{i=1}^{2n} \left( \frac{\ddot{\omega_{i}}}{\omega_{i}} \right)^{2}, $$

and Lemma 4.4, then following the same procedure, it is easy to verify (46). From (33) and (36), we have

$$ \begin{array}{@{}rcl@{}} & & \left( \frac{2n}{(1-\theta)} \right) \left( \frac{4(1+\theta)n^{2}}{(1-\theta)^{3}} \right) \ge \left( \Bigl\lVert \frac{\dot{p}}{p}\Bigr\rVert^{2}+ \Bigl\lVert \frac{\dot{\omega}}{\omega} \Bigr\rVert^{2} \right) \left( \Bigl\lVert \frac{\ddot{p}}{p}\Bigr\rVert^{2}+ \Bigl\lVert \frac{\ddot{\omega}}{\omega} \Bigr\rVert^{2} \right) \\ & \ge & \Bigl\lVert \frac{\ddot{p}}{p} \Bigr\rVert^{2} \Bigl\lVert \frac{\dot{\omega}}{\omega} \Bigr\rVert^{2} +\Bigl\lVert \frac{\dot{p}}{p} \Bigr\rVert^{2} \Bigl\lVert \frac{\ddot{\omega}}{\omega} \Bigr\rVert^{2} \\ & = &\left( {\sum}_{i=1}^{2n} \left( \frac{\ddot{p_{i}}}{p_{i}} \right)^{2} \right) \left( {\sum}_{i=1}^{2n} \left( \frac{\dot{\omega_{i}}}{\omega_{i}} \right)^{2} \right) +\left( {\sum}_{i=1}^{2n} \left( \frac{\dot{p_{i}}}{p_{i}} \right)^{2} \right) \left( {\sum}_{i=1}^{2n} \left( \frac{\ddot{\omega_{i}}}{\omega_{i}} \right)^{2} \right) \\ & \ge & {\sum}_{i=1}^{2n} \left( \frac{\ddot{p_{i}}\dot{\omega_{i}}}{p_{i}\omega_{i}} \right)^{2} +{\sum}_{i=1}^{2n} \left( \frac{\dot{p_{i}}\ddot{\omega_{i}}}{p_{i}\omega_{i}} \right)^{2} \\ & \ge & {\sum}_{i=1}^{2n} \left( \frac{\ddot{p_{i}}\dot{\omega_{i}}}{(1+\theta) \mu} \right)^{2} +{\sum}_{i=1}^{2n} \left( \frac{\dot{p_{i}}\ddot{\omega_{i}}}{(1+\theta) \mu} \right)^{2} \\ & = & \frac{1}{(1+\theta)^{2}\mu^{2}} \left( \Bigl\lVert \ddot{p} \circ \dot{\omega} \Bigr\rVert^{2} +\Bigl\lVert \dot{p} \circ \ddot{\omega} \Bigr\rVert^{2} \right), \\ \end{array} $$
(91)

i.e.,

$$ \Bigl\lVert \ddot{p} \circ \dot{\omega} \Bigr\rVert^{2} +\Bigl\lVert \dot{p} \circ \ddot{\omega} \Bigr\rVert^{2} \le \frac{(2n)^{3}(1+\theta)^{3}}{(1-\theta)^{4}} \mu^{2}. $$

This proves the lemma.□

Proof Proof of Lemma 4.9

First notice that \(q(\sin \limits (\alpha ))\) is a monotonic increasing function of \(\sin \limits (\alpha )\) for \(\alpha \in [0, \frac {\pi }{2}]\) and \(q(\sin \limits (0))<0\); therefore, we need only to show that \(q(\frac {\theta }{\sqrt {n}}) <0\) for 𝜃 ≤ 0.22. Using Lemma 2.6, we have

$$ \Big\lVert \dot{p} \circ \ddot{\omega}+\dot{\omega} \circ \ddot{p} -\frac{1}{2n}(\dot{p}^{\mathrm{T}}\ddot{\omega}+\dot{\omega}^{\mathrm{T}}\ddot{p})e \Big\rVert \le \Big\lVert \dot{p} \circ \ddot{\omega} \Big\rVert+ \Big\lVert \dot{\omega} \circ \ddot{p} \Big\rVert, $$
$$ \Big\lVert \ddot{p} \circ \ddot{\omega}-\dot{\omega} \circ \dot{p} -\frac{1}{2n}(\ddot{p}^{\mathrm{T}}\ddot{\omega}-\dot{\omega}^{\mathrm{T}}\dot{p})e \Big\rVert \le \Big\lVert \ddot{p} \circ \ddot{\omega} \Big\rVert+ \Big\lVert \dot{\omega} \circ \dot{p} \Big\rVert. $$

In view of Lemmas 4.8, 4.3, and 4.4, from (42), we have, for \(\alpha \in [0, \frac {\pi }{2}]\),

$$ \begin{array}{@{}rcl@{}} q(\sin(\alpha)) &\le & \left( \Big\lVert \ddot{p} \circ \ddot{\omega} \Big\rVert+ \Big\lVert \dot{\omega} \circ \dot{p} \Big\rVert +2\theta \frac{\dot{p}^{\mathrm{T}}\dot{\omega}}{2n} \right) \sin^{4}(\alpha) +\left( \Big\lVert \dot{p} \circ \ddot{\omega} \Big\rVert+ \Big\lVert \dot{\omega} \circ \ddot{p} \Big\rVert\right) \sin^{3}(\alpha) \\ & &+ 2\theta \frac{\dot{p}^{\mathrm{T}}\dot{\omega}}{2n}\sin^{2}(\alpha) +\theta \mu\sin(\alpha)-\theta \mu \\ &\le & \mu \Bigg(\left( \frac{2(1+\theta)^{2}}{(1-\theta)^{3}}n^{2}+\frac{n(1+\theta)}{(1-\theta)}+ \frac{\theta(1+\theta)}{(1-\theta)} \right) \sin^{4}(\alpha) +4\sqrt{2}\frac{(1+\theta)^{\frac{3}{2}}}{(1-\theta)^{2}}n^{\frac{3}{2}}\sin^{3}(\alpha) \\ && {\kern1.7pc}+ \frac{\theta(1+\theta)}{(1-\theta)} \sin^{2}(\alpha) +\theta \sin(\alpha)-\theta \Bigg). \end{array} $$

Since n ≥ 1 and 𝜃 > 0, substituting \(\sin \limits (\alpha )=\frac {\theta }{\sqrt {n}}\) gives

$$ \begin{array}{@{}rcl@{}} q\Big(\frac{\theta}{\sqrt{n}} \Big) &\le & \mu \Bigg(\left( \frac{2(1+\theta)^{2}}{(1-\theta)^{3}}n^{2} +\frac{n(1+\theta)}{(1-\theta)}+ \frac{\theta(1+\theta)}{(1-\theta)} \right) \frac{\theta^{4}}{n^{2}} +4\sqrt{2}\frac{(1+\theta)^{\frac{3}{2}}n^{\frac{3}{2}}}{(1-\theta)^{2}} \frac{\theta^{3}}{n^{\frac{3}{2}}} \\ && {\kern2pc}+\frac{\theta(1+\theta)}{(1-\theta)} \frac{\theta^{2}}{n} +\theta \frac{\theta}{\sqrt{n}}-\theta \Bigg) \\ &= & \theta\mu\Bigg(\frac{2\theta^{3}(1+\theta)^{2}}{(1-\theta)^{3}} +\frac{ \theta^{3}(1+\theta)}{n(1-\theta)}+\frac{ \theta^{4}(1+\theta)}{(1-\theta)n^{2}} \\ && {\kern2pc}+\frac{4\sqrt{2} \theta^{2}(1+\theta)^{\frac{3}{2}}}{(1-\theta)^{2}} +\frac{ \theta^{2}(1+\theta)}{n(1-\theta)}+\frac{ \theta}{\sqrt{n}} -1 \Bigg) \\ &\le & \theta\mu\Bigg(\frac{2\theta^{3}(1+\theta)^{2}}{(1-\theta)^{3}} +\frac{ \theta^{3}(1+\theta)}{(1-\theta)}+\frac{ \theta^{4}(1+\theta)}{(1-\theta)} \\ & &{\kern1.6pc}+\frac{4\sqrt{2} \theta^{2}(1+\theta)^{\frac{3}{2}}}{(1-\theta)^{2}} +\frac{ \theta^{2}(1+\theta)}{(1-\theta)}+ { \theta} -1 \Bigg) :=\theta\mu p(\theta). \end{array} $$
(92)

Since p(𝜃) is a monotonic increasing function of 𝜃 ∈ [0, 1), p(0) < 0, it is easy to verify that p(0.22) < 0. This proves the lemma. □

Proof Proof of Lemma 4.10

Using Lemma 2.6, we have

$$ 0 \le \Big\lVert {\Delta} p \circ {\Delta} \omega - \frac{1}{2n}({\Delta} p^{\mathrm{T}}{\Delta} \omega) e \Big\rVert^{2} \le \| {\Delta} p \circ {\Delta} \omega \|^{2}. $$
(93)

Pre-multiplying \(\Big (P(\alpha ){\Omega }(\alpha )\Big )^{-\frac {1}{2}}\) on both sides of (52) yields

$$ D {\Delta} \omega+D^{-1} {\Delta} p=\Big(P(\alpha){\Omega}(\alpha)\Big)^{-\frac{1}{2}} \Big(\mu(\alpha) e -P(\alpha){\Omega}(\alpha)e\Big). $$

Let u = DΔω, v = D− 1Δp, from (49), we have

$$ u^{\mathrm{T}}v= {\Delta} p^{\mathrm{T}} {\Delta} \omega = {\Delta} y^{\mathrm{T}} {\Delta} \lambda + {\Delta} z^{\mathrm{T}} {\Delta} \gamma={\Delta} x^{\mathrm{T}} ({\Delta} \gamma - {\Delta} \lambda ) = {\Delta} x^{\mathrm{T}} H {\Delta} x \ge 0. $$
(94)

Use Lemma 2.4 and the assumption of \((x(\alpha ), p(\alpha ), \omega (\alpha )) \in \mathcal {N}_{2}(2\theta )\), we have

$$ \begin{array}{@{}rcl@{}} \Big\lVert {\Delta} p \circ {\Delta} \omega \Big\rVert & = & \Big\lVert u \circ v \Big\rVert \le 2^{-\frac{3}{2}} \Big\lVert \Big(P(\alpha){\Omega}(\alpha) \Big)^{-\frac{1}{2}} \Big(\mu(\alpha) e-P(\alpha){\Omega}(\alpha)e \Big) \Big\rVert^{2} \\ & = & 2^{-\frac{3}{2}} {\sum}_{i=1}^{2n} \frac{\left( \mu(\alpha)-p_{i}(\alpha)\omega_{i}(\alpha)\right)^{2}} {p_{i}(\alpha)\omega_{i}(\alpha)} \\ & \le & 2^{-\frac{3}{2}} \frac{\| \mu(\alpha) e-p(\alpha)\circ \omega(\alpha) \|^{2}} {\min_{i}{p_{i}(\alpha)\omega_{i}(\alpha)}} \\ & \le & 2^{-\frac{3}{2}} \frac{(2\theta)^{2}\mu(\alpha)^{2}} {(1-2\theta)\mu(\alpha)} =2^{\frac{1}{2}} \frac{\theta^{2}\mu(\alpha)}{(1-2\theta)}. \end{array} $$
(95)

Define (pk+ 1(t),ωk+ 1(t)) = (p(α),ω(α)) + tpω). From (52) and (26), we have

$$ p(\alpha)^{\mathrm{T}} {\Delta} \omega+ \omega(\alpha)^{\mathrm{T}} {\Delta} p = 2n \mu -{\sum}_{i=1}^{2n} p_{i}(\alpha) \omega_{i}(\alpha)=0. $$
(96)

Therefore,

$$ {\mu}^{k+1}(t)=\frac{ \Big(p(\alpha)+t{\Delta} p \Big)^{\mathrm{T}}\Big(\omega(\alpha)+t{\Delta} \omega \Big)}{2n} =\frac{ p(\alpha)^{\mathrm{T}}\omega(\alpha)+t^{2}{\Delta} p^{\mathrm{T}}{\Delta} \omega}{2n} = \mu(\alpha) + t^{2}\frac{ {\Delta} p^{\mathrm{T}}{\Delta} \omega}{2n}. $$
(97)

Since ΔpTΔω = ΔxTHΔx ≥ 0, we conclude that μk+ 1(t) ≥ μ(α). Using (97), (52), (93), and (95), we have

$$ \begin{array}{@{}rcl@{}} \\ & & \Big\lVert p^{k+1}(t) \circ \omega^{k+1}(t) - {\mu}^{k+1}(t)e \Big\rVert \\ & = & \Big\lVert (p(\alpha)+t{\Delta} p) \circ (\omega(\alpha)+t{\Delta} \omega) - \mu(\alpha) e - \frac{t^{2}}{2n} \left( {\Delta} p^{\mathrm{T}} {\Delta} \omega \right) e \Big\rVert \\ & = & \Big\lVert p(\alpha)\circ \omega(\alpha) +t(\omega(\alpha) \circ {\Delta} p + p(\alpha) \circ {\Delta} \omega) + t^{2} {\Delta} p \circ {\Delta} \omega - \mu(\alpha) e -\frac{t^{2}}{2n} \left( {\Delta} p^{\mathrm{T}} {\Delta} \omega \right) e \Big\rVert \\ & = & \Big\lVert p(\alpha)\circ \omega(\alpha) +t(\mu(\alpha) e-p(\alpha)\circ \omega(\alpha)) + t^{2} {\Delta} p \circ {\Delta} \omega - \mu(\alpha) e -\frac{t^{2}}{2n} \left( {\Delta} p^{\mathrm{T}} {\Delta} \omega \right) e \Big\rVert \\ & = & \Big\lVert (1-t)\left( p(\alpha)\circ \omega(\alpha)- \mu(\alpha) e \right) + t^{2}\left( {\Delta} p \circ {\Delta} \omega - \frac{1}{2n}\left( {\Delta} p^{\mathrm{T}} {\Delta} \omega \right) e \right) \Big\rVert \\ & \le & (1-t)(2\theta) \mu(\alpha) + t^{2} \frac{2^{\frac{1}{2}}\theta^{2}}{(1-2\theta)}\mu(\alpha) \\ & \le & \left( (1-t)(2\theta) + t^{2} \frac{2^{\frac{1}{2}}\theta^{2}}{(1-2\theta)} \right) \mu^{k+1} :=f(t, \theta)\mu^{k+1}. \end{array} $$
(98)

Therefore, taking t = 1 gives \(\Big \lVert p^{k+1} \circ \omega ^{k+1} - {\mu }^{k+1}e \Big \rVert \le \frac {2^{\frac {1}{2}}\theta ^{2}}{(1-2\theta )}\mu ^{k+1}\). It is easy to see that, for 𝜃 ≤ 0.29,

$$ \frac{2^{\frac{1}{2}}\theta^{2}}{(1-2\theta)} = 0.2832 < \theta. $$

For 𝜃 ≤ 0.29 and t ∈ [0, 1], noticing 0 ≤ f(t,𝜃) ≤ f(t, 0.29) ≤ 0.58(1 − t) + 0.2832t2 < 1, and using Corollary 4.1, we have, for an additional condition \(\sin \limits (\alpha ) \le \sin \limits ^{-1}(\bar {\alpha })\),

$$ \begin{array}{@{}rcl@{}} p_{i}^{k+1}(t)\omega_{i}^{k+1}(t) & \ge& \left( 1-f(t, \theta) \right) \mu^{k+1}(t) \\ & =&\left( 1-f(t, \theta) \right) \left( \mu(\alpha)+\frac{t^{2}}{n}{\Delta} p^{\mathrm{T}}{\Delta} \omega \right) \\ & \ge& \left( 1-f(t, \theta) \right)\mu(\alpha) \\ & >&0. \end{array} $$
(99)

Therefore, (pk+ 1(t),ωk+ 1(t)) > 0 for t ∈ [0, 1], i.e., (pk+ 1,ωk+ 1) > 0. This finishes the proof.□

Proof Proof of Lemma 4.11

The first inequality of (53) follows from (94). Pre-multiplying both sides of (52) by \(P^{-\frac {1}{2}}(\alpha ){\Omega }^{-\frac {1}{2}}(\alpha )\) gives

$$ P^{-\frac{1}{2}}(\alpha){\Omega}^{\frac{1}{2}}(\alpha) {\Delta} p +P^{\frac{1}{2}}(\alpha){\Omega}^{-\frac{1}{2}}(\alpha) {\Delta} \omega =P^{-\frac{1}{2}}(\alpha){\Omega}^{-\frac{1}{2}}(\alpha)\Big(\mu(\alpha) e - P(\alpha){\Omega}(\alpha)e\Big). $$

Let \(u=P^{-\frac {1}{2}}(\alpha ){\Omega }^{\frac {1}{2}}(\alpha ) {\Delta } p\), \(v=P^{\frac {1}{2}}(\alpha ){\Omega }^{-\frac {1}{2}}(\alpha ) {\Delta } \omega \), and \(w=P^{-\frac {1}{2}}(\alpha ){\Omega }^{-\frac {1}{2}}(\alpha )\) (μ(α)eP(α)Ω(α)e), from (94), we have uTv = ΔpTΔω ≥ 0. Using Lemma 4.3 and the assumption of \((x(\alpha ), p(\alpha ), \omega (\alpha )) \in \mathcal {N}_{2}(2\theta )\), we have

$$ \begin{array}{@{}rcl@{}} && \| u\|^{2} + \| v \|^{2}={\sum}_{i=1}^{2n} \left( \frac{({\Delta} p_{i})^{2}\omega_{i}(\alpha)}{p_{i}(\alpha)} +\frac{({\Delta} \omega_{i})^{2}p_{i}(\alpha)}{\omega_{i}(\alpha)} \right) \\ &\le & \| w \|^{2} = {\sum}_{i=1}^{2n} \frac{(\mu(\alpha)-p_{i}(\alpha)\omega_{i}(\alpha))^{2}} {p_{i}(\alpha)\omega_{i}(\alpha)} \\ &\le & \frac{{\sum}_{i=1}^{2n} (\mu(\alpha)-p_{i}(\alpha)\omega_{i}(\alpha))^{2}} {\min_{i}{p_{i}(\alpha)\omega_{i}(\alpha)}} \\ &\le & \frac{(2\theta)^{2} \mu^{2}(\alpha)}{(1-2\theta)\mu(\alpha)} = \frac{(2\theta)^{2} \mu(\alpha)}{(1-2\theta)}. \\ \end{array} $$
(100)

Dividing both sides by μ(α) and using pi(α)ωi(α) ≥ μ(α)(1 − 2𝜃) yield

$$ \begin{array}{@{}rcl@{}} & &{\sum}_{i=1}^{2n} (1-2\theta)\left( \frac{({\Delta} p_{i})^{2}}{{p_{i}^{2}}(\alpha)} +\frac{({\Delta} \omega_{i})^{2}}{{\omega_{i}^{2}}(\alpha)} \right) \\ &= & (1-2\theta) \left( \Big\lVert \frac{\Delta p }{p(\alpha) } \Big\rVert^{2} +\Big\lVert \frac{\Delta \omega }{\omega(\alpha) } \Big\rVert^{2} \right) \\ &\le & \frac{(2\theta)^{2}}{(1-2\theta)}, \\ \end{array} $$
(101)

i.e.,

$$ \begin{array}{@{}rcl@{}} \Big\lVert \frac{\Delta p }{p(\alpha) } \Big\rVert^{2} +\Big\lVert \frac{\Delta \omega }{\omega(\alpha) } \Big\rVert^{2} \le \left( \frac{2\theta}{1-2\theta} \right)^{2}. \end{array} $$
(102)

Invoking Lemma 4.1, we have

$$ \begin{array}{@{}rcl@{}} \Big\lVert \frac{\Delta p }{p(\alpha) } \Big\rVert^{2} \cdot\Big\lVert \frac{\Delta \omega }{\omega(\alpha) } \Big\rVert^{2} \le \frac{1}{4} \left( \frac{2\theta}{1-2\theta}\right)^{4}. \end{array} $$
(103)

This gives

$$ \begin{array}{@{}rcl@{}} \Big\lVert \frac{\Delta p }{p(\alpha) } \Big\rVert \cdot\Big\lVert \frac{\Delta \omega }{\omega(\alpha) } \Big\rVert \le \frac{2\theta^{2}}{(1-2\theta)^{2}}. \end{array} $$
(104)

Using Cauchy-Schwarz inequality, we have

$$ \begin{array}{@{}rcl@{}} && \frac{({\Delta} p)^{\mathrm{T}}({\Delta} \omega)}{\mu(\alpha)} \\ &\le & {\sum}_{i=1}^{2n} \frac{|{\Delta} p_{i}||{\Delta} \omega_{i}|}{\mu(\alpha)} \\ &\le & (1+2\theta){\sum}_{i=1}^{2n} \frac{|{\Delta} p_{i}|}{p_{i}(\alpha)} \frac{|{\Delta} \omega_{i}|}{\omega_{i}(\alpha)} \\ &= & (1+2\theta)\Big\lvert \frac{\Delta p}{p(\alpha)} \Big\rvert^{\mathrm{T}} \Big\lvert \frac{\Delta \omega}{\omega(\alpha)} \Big\rvert \\ &\le & (1+2\theta) \Big\lVert \frac{\Delta p }{p(\alpha) } \Big\rVert \cdot\Big\lVert \frac{\Delta \omega }{\omega(\alpha) } \Big\rVert \\ &\le & \frac{2\theta^{2}(1+2\theta)}{(1-2\theta)^{2}}. \end{array} $$
(105)

Therefore,

$$ \begin{array}{@{}rcl@{}} \frac{({\Delta} p)^{\mathrm{T}}({\Delta} \omega)}{2n} \le \frac{\theta^{2}(1+2\theta)}{n(1-2\theta)^{2}}\mu(\alpha). \end{array} $$
(106)

This proves the lemma.□

Proof Proof of Lemma 4.13

Using Lemmas 4.12, 4.5, 2.2, 4.2, 4.3, and 4.4, and noticing \(\ddot {p}^{\mathrm {T}}\ddot {\omega } \ge 0\) and \(\dot {p}^{\mathrm {T}}\dot {\omega } \ge 0\), we have

$$ \begin{array}{@{}rcl@{}} {}\mu^{k+1}& \le &\mu(\alpha) \left( 1+\frac{\theta^{2}(1+2\theta)}{n(1-2\theta)^{2}} \right) =\mu(\alpha) \left( 1+\frac{\delta_{0}}{n}\right) \end{array} $$
(107a)
$$ \begin{array}{@{}rcl@{}} &= & \mu^{k} \left( 1-\sin({\alpha})+ \left( \frac{\ddot{p}^{\mathrm{T}}\ddot{\omega}}{2n\mu}- \frac{\dot{p}^{\mathrm{T}}\dot{\omega}}{2n\mu} \right)(1-\cos(\alpha))^{2}\right.\\ &&{\kern14pt}\left.-\left( \frac{\dot{p}^{\mathrm{T}}\ddot{\omega}}{2n\mu}+ \frac{\dot{\omega}^{\mathrm{T}}\ddot{p}}{2n\mu} \right)\sin(\alpha)(1-\cos(\alpha)) \right) \left( 1+\frac{\delta_{0}}{n}\right) \\ &\le & \mu^{k} \left( 1-\sin({\alpha})+ \frac{\ddot{p}^{\mathrm{T}}\ddot{\omega}}{2n\mu}\sin^{4}(\alpha) +\left( \left| \frac{\dot{p}^{\mathrm{T}}\ddot{\omega}}{2n\mu} \right| + \left| \frac{\dot{\omega}^{\mathrm{T}}\ddot{p}}{2n\mu} \right| \right)\sin^{3}(\alpha) \right) \left( 1+\frac{\delta_{0}}{n}\right) \\ &\le & \mu^{k} \left( 1-\sin(\alpha)+\frac{n(1+\theta)^{2}}{(1-\theta)^{3}}\sin^{4}(\alpha) +\frac{2(2n)^{\frac{1}{2}}(1+\theta)^{\frac{3}{2}}}{(1-\theta)^{2}}\sin^{3}(\alpha) \right) \left( 1+\frac{\delta_{0}}{n}\right) \end{array} $$
(107b)

Substituting \(\sin \limits (\alpha ) =\frac {\theta }{\sqrt {n}}\) into (107b) gives

$$ \begin{array}{@{}rcl@{}} \mu^{k+1}{} &\le &{} \mu^{k} \left( 1-\frac{\theta}{\sqrt{n}}+\frac{n(1+\theta)^{2}}{(1-\theta)^{3}}\frac{\theta^{4}}{{n}^{2}} +\frac{2(2n)^{\frac{1}{2}}(1+\theta)^{\frac{3}{2}}}{(1-\theta)^{2}}\frac{\theta^{3}}{{n}^{\frac{3}{2}}} \right) \left( 1+\frac{\delta_{0}}{n}\right) \\ {}&=&{} \mu^{k} \left( 1-\frac{\theta}{\sqrt{n}}+\frac{\theta^{4}(1+\theta)^{2}}{n(1-\theta)^{3}} +\frac{2^{\frac{3}{2}}\theta^{3}(1+\theta)^{\frac{3}{2}}}{n(1-\theta)^{2}} \right) \left( 1+\frac{\delta_{0}}{n}\right) \\ {}&=& {}\mu^{k} \left( 1-\frac{\theta}{\sqrt{n}}+\frac{\delta_{0}}{n} +\frac{\theta^{4}(1+\theta)^{2}}{n(1-\theta)^{3}} +\frac{2^{\frac{3}{2}}\theta^{3}(1+\theta)^{\frac{3}{2}}}{n(1-\theta)^{2}} -\frac{\theta \delta_{0}}{n^{\frac{3}{2}}} +\frac{\delta_{0}}{n}\left[ \frac{\theta^{4}(1+\theta)^{2}}{n(1-\theta)^{3}} +\frac{2^{\frac{3}{2}}\theta^{3}(1+\theta)^{\frac{3}{2}}}{n(1-\theta)^{2}} \right] \right) \\ {}&=& {}\mu^{k} \left( {}1-\frac{\theta}{\sqrt{n}} {}\left[ {}1{\kern-.5pt}-{\kern-.5pt}\frac{\delta_{0}}{\sqrt{n} \theta} {\kern-.5pt}-{\kern-.5pt}\frac{\theta^{3}(1{\kern-.5pt}+{\kern-.5pt}\theta)^{2}}{\sqrt{n}(1{\kern-.5pt}-{\kern-.5pt}\theta)^{3}} -\frac{2^{\frac{3}{2}}\theta^{2}(1{\kern-.5pt}+{\kern-.5pt}\theta)^{\frac{3}{2}}}{\sqrt{n}(1-\theta)^{2}} {}\right]{}-\frac{\theta \delta_{0}}{n^{\frac{3}{2}}} \left[ {}1- \frac{\theta^{3}(1{}+{}\theta)^{2}}{\sqrt{n}(1{}-{}\theta)^{3}} -\frac{2^{\frac{3}{2}}\theta^{2}(1{}+{}\theta)^{\frac{3}{2}}}{\sqrt{n}(1{}-{}\theta)^{2}} {}\right]{} \right) \end{array} $$

Since

$$ 1- \frac{\theta^{3}(1+\theta)^{2}}{\sqrt{n}(1-\theta)^{3}} -\frac{2^{\frac{3}{2}}\theta^{2}(1+\theta)^{\frac{3}{2}}}{\sqrt{n}(1-\theta)^{2}} \ge 1- \frac{\theta^{3}(1+\theta)^{2}}{(1-\theta)^{3}} -\frac{2^{\frac{3}{2}}\theta^{2}(1+\theta)^{\frac{3}{2}}}{(1-\theta)^{2}} := f(\theta), $$

where f(𝜃) is a monotonic decreasing function of 𝜃, it follows that for 𝜃 ≤ 0.37, f(𝜃) > 0. Therefore, for 𝜃 ≤ 0.37,

$$ \begin{array}{@{}rcl@{}} \mu^{k+1} \le & \mu^{k} \left( 1-\frac{\theta}{\sqrt{n}} \left[ 1-\frac{\delta_{0}}{\sqrt{n} \theta} -\frac{\theta^{3}(1+\theta)^{2}}{\sqrt{n}(1-\theta)^{3}} -\frac{2^{\frac{3}{2}}\theta^{2}(1+\theta)^{\frac{3}{2}}}{\sqrt{n}(1-\theta)^{2}} \right] \right) \\ =& \mu^{k} \left( 1-\frac{\theta}{\sqrt{n}} \left[ 1-\frac{\theta (1+2\theta)}{\sqrt{n}(1-2\theta)^{2}} -\frac{\theta^{3}(1+\theta)^{2}}{\sqrt{n}(1-\theta)^{3}} -\frac{2^{\frac{3}{2}}\theta^{2}(1+\theta)^{\frac{3}{2}}}{\sqrt{n}(1-\theta)^{2}} \right] \right) \end{array} $$
(108)

Since

$$ 1-\frac{\theta (1+2\theta)}{\sqrt{n}(1-2\theta)^{2}} -\frac{\theta^{3}(1+\theta)^{2}}{\sqrt{n}(1-\theta)^{3}} -\frac{2^{\frac{3}{2}}\theta^{2}(1+\theta)^{\frac{3}{2}}}{\sqrt{n}(1-\theta)^{2}} \ge 1-\frac{\theta (1+2\theta)}{(1-2\theta)^{2}} -\frac{\theta^{3}(1+\theta)^{2}}{(1-\theta)^{3}} -\frac{2^{\frac{3}{2}}\theta^{2}(1+\theta)^{\frac{3}{2}}}{(1-\theta)^{2}}:=g(\theta), $$

where g(𝜃) is a monotonic decreasing function of 𝜃, it follows that for 𝜃 ≤ 0.19, g(𝜃) > 0.0976 > 0. For 𝜃 = 0.19, 𝜃g(𝜃) > 0.0185 and

$$ \mu^{k+1} \le \mu^{k} \left( 1-\frac{0.0185}{\sqrt{n}} \right). $$

This proves (55). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y. An efficient arc-search interior-point algorithm for convex quadratic programming with box constraints. Numer Algor 91, 711–748 (2022). https://doi.org/10.1007/s11075-022-01279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01279-x

Keywords

Navigation