Skip to main content
Log in

A second-order dynamical system for equilibrium problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider a second-order dynamical system for solving equilibrium problems in Hilbert spaces. Under mild conditions, we prove existence and uniqueness of strong global solution of the proposed dynamical system. We establish the exponential convergence of trajectories under strong pseudo-monotonicity and Lipschitz-type conditions. We then investigate a discrete version of the second-order dynamical system, which leads to a fixed point-type algorithm with inertial effect and relaxation. The linear convergence of this algorithm is established under suitable conditions on parameters. Finally, some numerical experiments are reported confirming the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Antipin, A.S.: The convergence of proximal methods to fixed points of extremal mappings and estimates of their rate of convergence. Comput. Maths. Math. Phys. 35, 539–551 (1995)

    MATH  Google Scholar 

  2. Abbas, B., Attouch, H., Svaiter, B.F.: Newton-like dynamics and forward-backward methods for structured monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 161, 331–360 (2014)

    Article  MathSciNet  Google Scholar 

  3. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Analysis 9, 311 (2001)

    Article  MathSciNet  Google Scholar 

  4. Attouch, H., Maingé, P.E.: Asymptotic behavior of second-order dissipative equations evolution combining potential with non-potential effects. ESAIM: Control Optimisation and Calculus of Variations 17, 836–857 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert spaces, CMS Books in Mathematics. Springer (2011)

  6. Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Nonlinear Programming Techniques for Equilibria. Springer (2019)

  7. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Boţ, R. I., Csetnek, E.R.: Second order forward-backward dynamical systems for monotone inclusion problems. SIAM J. Control. Optim. 54, 1423–1443 (2016)

    Article  MathSciNet  Google Scholar 

  9. Boţ, R. I., Csetnek, E.R.: A dynamical system associated with the fixed points set of a nonexpansive operator. J. Dyn. Diff. Equat. 29, 155–168 (2017)

    Article  MathSciNet  Google Scholar 

  10. Boţ, R. I., Csetnek, E.R.: Convergence rates for forward-backward dynamical systems associated with strongly monotone inclusions. J. Math. Anal. Appl. 457, 1135–1152 (2018)

    Article  MathSciNet  Google Scholar 

  11. Boţ, R. I., Csetnek, E.R., Vuong, P.T.: The Forward-Backward-Forward Method from discrete and continuous perspective for pseudo-monotone variational inequalities in Hilbert Spaces. Eur. J. Oper. Res. 287, 49–60 (2020)

    Article  Google Scholar 

  12. Boţ, R. I., Sedlmayer, M., Vuong, P.T.: A Relaxed Inertial Forward-Backward-Forward Algorithm for Solving Monotone Inclusions with Application to GANs. arXiv:2003.07886 (2020)

  13. Cavazzuti, E., Pappalardo, P., Passacantando, M.: Nash Equilibria, Variational Inequalities, and Dynamical Systems. J. Optim. Theory Appl. 114, 491–506 (2002)

    Article  MathSciNet  Google Scholar 

  14. Contreras, J., Klusch, M., Krawczyk, J.B.: Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets. IEEE Trans. Power Syst. 19, 195–206 (2004)

    Article  Google Scholar 

  15. Facchinei, F., Pang, J. -S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Vols I and II. Springer, New York (2003)

    MATH  Google Scholar 

  16. Ha, N.T.T., Strodiot, J.J., Vuong, P.T.: On the global exponential stability of a projected dynamical system for strongly pseudomonotone variational inequalities. Opt. Lett. 12, 1625–1638 (2018)

    Article  MathSciNet  Google Scholar 

  17. Hieu, D.V.: New inertial algorithm for a class of equilibrium problems. Numer. Algor. 80, 1413–1436 (2019)

    Article  MathSciNet  Google Scholar 

  18. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (1981)

    Book  Google Scholar 

  19. Hung, P.G., Muu, L.D.: The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions. Nonlinear Analysis: Theory, Methods and Applications 74(17), 6121–6129 (2011)

    Article  MathSciNet  Google Scholar 

  20. Karamardian, S., Schaible, S.: Seven kinds of monotone maps. J. Optim. Theory Appl. 66, 37–46 (1990)

    Article  MathSciNet  Google Scholar 

  21. Khanh, P.D., Vuong, P.T.: Modified projection method for strongly pseudomonotone variational inequalities. J. Glob. Optim. 58, 341–350 (2014)

    Article  MathSciNet  Google Scholar 

  22. Kim, D.S., Vuong, P.T., Khanh, P.D.: Qualitative properties of strongly pseudomonotone variational inequalities. Opt. Lett. 10, 1669–1679 (2016)

    Article  MathSciNet  Google Scholar 

  23. Mastroeni, G.: On auxiliary principle for equilibrium problems. In: Daniele, P. et al. (eds.) Equilibrium Problems and Variational Models, pp 289–298. Kluwer Academic Publishers, Dordrecht (2003)

  24. Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constraint equilibria. Nonlinear Anal. 18, 1159–1166 (1992)

    Article  MathSciNet  Google Scholar 

  25. Muu, L.D., Quoc, T.D.: Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model. J. Optim. Theory Appl. 142, 185–204 (2009)

    Article  MathSciNet  Google Scholar 

  26. Muu, L.D., Quy, N.V.: On existence and solution methods for strongly pseudomonotone equilibrium problems. Vietnam J. Math. 43, 229–238 (2015)

    Article  MathSciNet  Google Scholar 

  27. Nagurney, A., Zhang, D: Projected Dynamical Systems and Variational Inequalities with Applications. Kluwer Academic (1996)

  28. Pappalardo, M., Passacantando, M.: Stability for equilibrium problems: From variational inequalities to dynamical systems. J. Optim. Theory Appl. 113, 567–582 (2002)

    Article  MathSciNet  Google Scholar 

  29. Quoc, T.D., Muu, L.D.: Iterative methods for solving monotone equilibrium problems via dual gap functions. Comput. Optim. Appl. 51, 709–728 (2012)

    Article  MathSciNet  Google Scholar 

  30. Quoc, T.D., Pham, N., Anh, L.D.: Muu: Dual extragradient algorithms extended to equilibrium problems. J. Glob. Optim. 52, 139–159 (2012)

    Article  Google Scholar 

  31. Quoc, T.D., Muu, L.D., Nguyen, V.H.: Extragradient methods extend to equilibrium problems. Optimization 57, 749–776 (2008)

    Article  MathSciNet  Google Scholar 

  32. Strodiot, J.J., Vuong, P.T., Van, N.T.T.: A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces. J. Glob. Optim. 61, 159–178 (2016)

  33. Vuong, P.T., Strodiot, J.J.: The Glowinski–Le Tallec splitting method revisited in the framework of equilibrium problems in Hilbert spaces. J. Glob. Optim. 70, 477–495 (2018)

    Article  MathSciNet  Google Scholar 

  34. Vuong, P.T.: A second order dynamical system and its discretization for strongly pseudo-monotone variational inequalities. SIAM J. Control Optim. 59 (4), 2875–2897 (2021)

    Article  MathSciNet  Google Scholar 

  35. Vuong, P.T.: The global exponential stability of a dynamical system for solving variational inequalities. Networks and Spatial Economics (2019) https://doi.org/10.1007/s11067-019-09457-6

  36. Vuong, P.T., Strodiot, J.J.: A dynamical system for strongly pseudo-monotone equilibrium problems. J. Optim. Theory Appl. 185, 767–784 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to both anonymous referees for their constructive comments, which helped improve the presentation of this paper. The research of Le Van Vinh is funded by Van Lang University, Vietnam. Nam Van Tran thanks the support from Ho Chi Minh City University of Technology and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Nam Tran.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Vinh, L., Tran, V.N. & Vuong, P.T. A second-order dynamical system for equilibrium problems. Numer Algor 91, 327–351 (2022). https://doi.org/10.1007/s11075-022-01264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01264-4

Keywords

Mathematics Subject Classification (2010)

Navigation