Skip to main content
Log in

Improved two-step Newton’s method for computing simple multiple zeros of polynomial systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Given a polynomial system f that is associated with an isolated singular zero ξ whose Jacobian matrix is of corank one, and an approximate zero x that is close to ξ, we propose an improved two-step Newton’s method for refining x to converge to ξ with quadratic convergence. Our new approach is based on a closed-form basis of the local dual space and a recursive reduction of the simple multiple zero. By avoiding solving several least-squares problems which appeared in the previous methods, an overall 2 ×-5 × acceleration is achieved. The proof of the quadratic convergence of proposed iterations is also simplified significantly. Numerical experiments demonstrate up to 100 × speed-up when we replace the least-squares-solving calculations with closed-form solutions for refining approximate singular solutions of large-size problems (1000 equations and 1000 variables).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akoglu, T.A., Hauenstein, J.D., Szanto, A.: Certifying solutions to overdetermined and singular polynomial systems over q. J. Symb. Comput. 84, 147–171 (2018)

    Article  MathSciNet  Google Scholar 

  2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer-Verlag New York, Inc Secaucus, NJ USA (1998)

  3. Dayton, B.: Numerical local rings and local solutions of nonlinear systems. In: Verschelde, J., Watt, S.M. (eds.) ProcSNC07, pp 79–86. ACM Press, New York (2007)

  4. Dayton, B., Li, T., Zeng, Z.: Multiple zeros of nonlinear systems. Math. Comput. 80, 2143–2168 (2011)

    Article  MathSciNet  Google Scholar 

  5. Dayton, B., Zeng, Z.: Computing the multiplicity structure in solving polynomial systems. In: Kauers, M. (ed.) Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, pp 116–123. ACM, New York (2005)

  6. Decker, D.W., Keller, H.B., Kelley, C.T.: Convergence rates for Newton’s method at singular points. SIAM J. Numer. Anal. 20, 296–314 (1983)

    Article  MathSciNet  Google Scholar 

  7. Decker, D.W., Keller, H.B., Kelley, C.T.: Broyden’s method for a class of problems having singular jacobian at the root. SIAM J. Numer. Anal. 22, 566–574 (1985)

    Article  MathSciNet  Google Scholar 

  8. Decker, D.W., Kelley, C.T.: Newton’s method at singular points I. SIAM J. Numer. Anal. 17, 66–70 (1980)

    Article  MathSciNet  Google Scholar 

  9. Decker, D.W., Kelley, C.T.: Newton’s method at singular points II. SIAM J. Numer. Anal. 17, 465–471 (1980)

    Article  MathSciNet  Google Scholar 

  10. Decker, D.W., Kelley, C.T.: Convergence acceleration for Newton’s method at singular point. SIAM J. Numer. Anal. 19, 219–229 (1982)

    Article  MathSciNet  Google Scholar 

  11. Dedieu, J.P., Shub, M.: On simple double zeros and badly conditioned zeros of analytic functions of n variables. Math. Comput. 70, 319–327 (2001)

    Article  MathSciNet  Google Scholar 

  12. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.-C.: On location and approximation of clusters of zeros of analytic functions. Found. Comput. Math. 5, 257–311 (2005)

    Article  MathSciNet  Google Scholar 

  13. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.-C.: On location and approximation of clusters of zeros: case of embedding dimension one. Found. Comput. Math. 7, 1–58 (2007)

    Article  MathSciNet  Google Scholar 

  14. Giusti, M., Yakoubsohn, J.-C.: Multiplicity hunting and approximating multiple roots of polynomial systems. In: Contemporay Mathematics 604 Recent Advances in Real Complexity and Computation, American Mathematical Society, pp 104–128 (2013)

  15. Giusti, M., Yakoubsohn, J.-C.: Numerical approximation of multiple isolated roots of analytic systems Manuscript available at https://arxiv.org/abs/1707.06301(2017)

  16. Griewank, A.: Analysis and modification of Newton’s method at singularities, thesis Australian National University (1980)

  17. Griewank, A.: On solving nonlinear equations with simple singularities or nearly singular solutions. SIAM Rev. 27, 537–563 (1985)

    Article  MathSciNet  Google Scholar 

  18. Griewank, A., Osborne, M.R.: Newton’s method for singular problems when the dimension of the null space is > 1. SIAM J. Numer. Anal. 18, 145–149 (1981)

    Article  MathSciNet  Google Scholar 

  19. Hao, Z., Jiang, W., Li, N., Zhi, L.: Computing simple multiple zeros of polynomial systems Manuscript available at https://www.arxiv.org/pdf/1703.03981.pdf(2017)

  20. Hao, Z., Jiang, W., Li, N., Zhi, L.: Computing simple multiple zeros of polynomial systems. Math. Comput. 89, 879–909 (2020)

    Article  Google Scholar 

  21. Hauenstein, J.D., Mourrain, B., Szanto, A.: Certifying isolated singular points and their multiplicity structure. In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’15, New York, NY, USA, 2015, pp 213–220. ACM (2015)

  22. Hauenstein, J.D., Mourrain, B., Szanto, A.: On deflation and multiplicity structure, vol. 83 (2017)

  23. Hauenstein, J.D., Wampler, C.W.: Isosingular sets and deflation. Found. Comput. Math. 13, 371–403 (2013)

    Article  MathSciNet  Google Scholar 

  24. Lecerf, G.: Quadratic Newton iteration for systems with multiplicity. Found. Comput. Math. 2, 247–293 (2002)

    Article  MathSciNet  Google Scholar 

  25. Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated singularities of polynomial systems. Theor. Comput. Sci. 359, 111–122 (2006)

    Article  MathSciNet  Google Scholar 

  26. Leykin, A., Verschelde, J., Zhao, A.: Higher-order deflation for polynomial systems with isolated singular solutions. In: Dickenstein, A., Schreyer, F.-O., Sommese, A. (eds.) Algorithms in Algebraic Geometry of The IMA Volumes in Mathematics and its Applications, vol. 146, pp 79–97. Springer, New York (2008)

  27. Li, N., Zhi, L.: Compute the multiplicity structure of an isolated singular solution: case of breadth one. J. Symb. Comput. 47, 700–710 (2012)

    Article  Google Scholar 

  28. Li, N., Zhi, L.: Computing isolated singular solutions of polynomial systems: case of breadth one. SIAM J. Numer. Anal. 50, 354–372 (2012)

    Article  MathSciNet  Google Scholar 

  29. Li, N., Zhi, L.: Verified error bounds for isolated singular solutions of polynomial systems: case of breadth one. Theor. Comput. Sci. 479, 163–173 (2013)

    Article  MathSciNet  Google Scholar 

  30. Mantzaflaris, A., Mourrain, B.: Deflation and certified isolation of singular zeros of polynomial systems. In: Leykin, A. (ed.) Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, ISSAC ’11, New York, NY, USA, ACM, pp 249–256 (2011)

  31. Mantzaflaris, A., Mourrain, B., Szanto, A.: Punctual Hilbert scheme and certified approximate singularities. In: Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, ISSAC ’20, New York, NY, USA, Association for Computing Machinery, pp 336–343 (2020)

  32. Morgan, A.P., Sommese, A.J., Wampler, C.W.: Computing singular solutions to polynomial systems. Adv. Appl. Math. 13, 305–327 (1992)

    Article  MathSciNet  Google Scholar 

  33. Ojika, T.: Modified deflation algorithm for the solution of singular problems. i. a system of nonlinear algebraic equations. J. Math. Anal. Appl. 123, 199–221 (1987)

    Article  MathSciNet  Google Scholar 

  34. Ojika, T.: A numerical method for branch points of a system of nonlinear algebraic equations. Appl. Numer. Math. 4, 419–430 (1988)

    Article  MathSciNet  Google Scholar 

  35. Ojika, T., Watanabe, S., Mitsui, T.: Deflation algorithm for the multiple roots of a system of nonlinear equations. J. Math. Anal. Appl. 96, 463–479 (1983)

    Article  MathSciNet  Google Scholar 

  36. Rall, L.: Convergence of the Newton process to multiple solutions. Numer. Math. 9, 23–37 (1966)

    Article  MathSciNet  Google Scholar 

  37. Reddien, G.W.: On Newton’s method for singular problems. SIAM J. Numer. Anal. 15, 993–996 (1978)

    Article  MathSciNet  Google Scholar 

  38. Reddien, G.W.: Newton’s method and high order singularities. Comput Math Appl 5, 79–86 (1979)

    Article  MathSciNet  Google Scholar 

  39. Rump, S. M., Graillat, S.: Verified error bounds for multiple roots of systems of nonlinear equations. Numer Alg 54, 359–377 (2010)

    Article  MathSciNet  Google Scholar 

  40. Shen, Y.-Q., Ypma, T.J.: Newton’s method for singular nonlinear equations using approximate left and right nullspaces of the Jacobian. Appl Numer Math 54, 256–265 (2005). 6th IMACS International symposium on iterative methods in scientific computing

    Article  MathSciNet  Google Scholar 

  41. Shen, Y.-Q., Ypma, T.J.: Solving rank-deficient separable nonlinear equations. Appl Numer. Math. 57, 609–615 (2007)

    Article  MathSciNet  Google Scholar 

  42. Shub, M., Smale, S.: Computational complexity: on the geometry of polynomials and a theory of cost: I. Annales Scientifiques De L É,cole Normale Supérieure 18, 107–142 (1985)

    Article  MathSciNet  Google Scholar 

  43. Shub, M., Smale, S.: Computational complexity: on the geometry of polynomials and a theory of cost: II. SIAM J. Comput. 15, 145–161 (1986)

    Article  MathSciNet  Google Scholar 

  44. Shub, M., Smale, S.: Complexity of bezout’s theorem IV: Probability of success; extensions. SIAM J. Numer. Anal. 33, 128–148 (1996)

    Article  MathSciNet  Google Scholar 

  45. Smale, S.: The fundamental theorem of algebra and complexity theory. Bull. Am. Math. Soc. 4, 1–36 (1981)

    Article  MathSciNet  Google Scholar 

  46. Smale, S.: Newton’s method estimates from data at one point. In: The Merging of Disciplines: New Directions in Pure, Applied and Computational Mathematics, pp 185–196. Springer, New York (1986)

  47. Stetter, H.: Numerical polynomial algebra society for industrial and applied mathematics (2004)

  48. Weyl, H.: Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Math. Ann. 74, 441–479 (1912)

    Article  MathSciNet  Google Scholar 

  49. Wu, X., Zhi, L.: Computing the multiplicity structure from geometric involutive form. In: Jeffrey, D. (ed.) Proceedings of the Twenty-first International Symposium on Symbolic and Algebraic Computation, ISSAC ’08, New York, NY, USA, ACM, pp 325–332 (2008)

  50. Wu, X., Zhi, L.: Determining singular solutions of polynomial systems via symbolic-numeric reduction to geometric involutive forms. J. Symb. Comput. 47, 227–238 (2012)

    Article  MathSciNet  Google Scholar 

  51. Yakoubsohn, J.-C.: Finding a cluster of zeros of univariate polynomials. J. Complex. 16, 603–638 (2000)

    Article  MathSciNet  Google Scholar 

  52. Yakoubsohn, J.-C.: Simultaneous computation of all zero clusters of an univariate polynomial. In: Foundations of Computational Mathematics, World Sci, Publishing, pp 433–455 (2002)

  53. Yamamoto, N.: Regularization of solutions of nonlinear equations with singular jacobian matrices. J. Inf. Process. 7, 16–21 (1984)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank referees for giving constructive comments which helped improving the quality of the exposition.

Funding

This research is supported by the National Key Research Project of China (2018YFA0306702 (Zhi)) and the National Natural Science Foundation of China (12071467 (Zhi), 12171324 (Li)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We prove below conditions (16), (17), (18), and (46).

Proof Proof of ( 16 )

. It is easy to check that

$$ \mathbf{d}^{\alpha}_{\xi}\left( (X-\xi)^{\beta}\right) =\left\{\begin{array}{rl} 1, & \alpha=\beta, \\ 0, & \text{otherwise.} \end{array} \right. $$

Since the order of every differential monomial in Δk is bounded above by k, we derive

$$ {{\varDelta}}_{k}\left( (X-\xi)^{\beta}\right) =0, ~\text{if}~|\beta|>k. $$

Proof Proof of ( 17 )

. Since (Xξ)βfi(X) ∈ If for i = 1,…,n, we have

$$ \begin{array}{@{}rcl@{}} 0&=&{{\varLambda}}_{k}\left( (X-\xi)^{\beta}f(X)\right)\\ &=&{{\varDelta}}_{k}\left( (X - \xi)^{\beta}f(X)\right) +a_{k,1}d_{1}\left( (X - \xi)^{\beta}f(X)\right) +\cdots+a_{k,n}d_{n}\left( (X - \xi)^{\beta}f(X)\right). \end{array} $$

Since f(ξ) = 0, we have \(d_j\left ((X-\xi )^{\beta }f(X)\right )=0\) for j = 1,…,n. Therefore, we derive

$$ {{\varDelta}}_{k}\left( (X-\xi)^{\beta}f(X)\right) =0, ~~\text{if}~|\beta|>0. $$

Proof Proof of ( 18 )

. Let \({{\varPhi }}[\mathbf {a}_k]={\sum }_{i=1}^n a_{k,i}{{\varPsi }}_i\), where \({{\varPsi }}_{i}:\mathfrak {D}_{\xi }\rightarrow \mathfrak {D}_{\xi }\) be the morphism that satisfies \({{\varPsi }}_{i}(d_1^{\alpha _1}{\cdots } d_n^{\alpha _n})=d_{i}^{\alpha _{i}+1} {\cdots } d_n^{\alpha _n}\) if α1 = ⋯ = αi− 1 = 0 and 0 otherwise for i = 1,…,n, then (5) and (6) can be rewritten into

$$ \begin{array}{@{}rcl@{}} {{\varDelta}}_{k}&=&\sum\limits_{j=1}^{k-1} {{\varPhi}}[\mathbf{a}_{j}]({{\varLambda}}_{k-j}), \\ {{\varLambda}}_{k}&=&{{\varDelta}}_{k}+{{\varPhi}}[\mathbf{a}_{k}](1). \end{array} $$

Consequently, Δk and Λk can be written into a sum of homogenous terms formulated by \({\prod }_{j=1}^k {{\varPhi }}[\mathbf {a}_j]^{n_j}(1)\), where nj ≥ 0 and \({\sum }_{j=1}^k n_j\leq k\). We can check that

$$ \prod\limits_{j=1}^{k} {{\varPhi}}[\mathbf{a}_{j}]^{n_{j}}(1)\left( [v^{*}(X-\xi)]^{l}\right) =\left\{\begin{array}{rl} {\prod}_{j=1}^{k}(v^{*}\mathbf{a}_{j})^{n_{j}}, & {\sum}_{j=1}^{k} n_{j}=l, \\ 0, & \text{otherwise.} \end{array} \right.$$

Since Φ[a1]k is the only pure term of Φ[a1] in Δk (other terms are mixed with at least one Φ[aj] for j = 2,…,k − 1), and \({v_n}^{*}\mathbf {a}_1=1\), \({v_n}^{*}\mathbf {a}_j=0\) according to (7), we derive

$$ {{\varDelta}}_{k}\left( \left[{v_{n}}^{*}(X-\xi)\right]^{l}\right) =\left\{\begin{array}{rl} 1, & \text{if}~k=l, \\ 0, & \text{otherwise}. \end{array} \right. $$

Proof Proof of ( 46 )

. Since \(\|{v^{\prime }_n}^{\ast }(x^{\prime }-\xi )\|\leq \|{v^{\prime }_n}^{\ast }\|\|x^{\prime }-\xi \|=O(\epsilon )\), we get

$$ \begin{array}{@{}rcl@{}} \left[{v^{\prime}_{n}}^{\ast}(X-x^{\prime})\right]^{k}\!& = &\!\left[{v^{\prime}_{n}}^{\ast}(X-\xi)+{v^{\prime}_{n}}^{\ast}(\xi-x^{\prime})\right]^{k}\\ \!& = &\!\left[{v^{\prime}_{n}}^{\ast}(X - \xi)\right]^{k} + k\left[{v^{\prime}_{n}}^{\ast}(X - \xi)\right]^{k-1} \left[{v^{\prime}_{n}}^{\ast}(\xi - x^{\prime})\right] + O(\epsilon^{2}) \end{array} $$
(47)
$$ \begin{array}{@{}rcl@{}} \!& = &\!\left[{v^{\prime}_{n}}^{\ast}(X-\xi)\right]^{k} +O(\epsilon). \end{array} $$
(48)

Similar to the proof of (18), \(\hat {{{\varDelta }}}_{\mu -1}\) and \(\hat {{{\varLambda }}}_{\mu -1}\) can be written as a sum of homogenous terms formulated by \({\prod }_{j=1}^{\mu -1} {{\varPhi }}[\hat {\mathbf {a}}_j]^{n_j}(1)\), where nj ≥ 0 and \({\sum }_{j=1}^{\mu -1} n_j\leq \mu -1\). According to (33) and (34), we know that \(|{v^{\prime }_n}^{*}\hat {\mathbf {a}}_1|=1-O(\epsilon )\) and \(|{v^{\prime }_n}^{*}\hat {\mathbf {a}}_j|=O(\epsilon )\), so we have

$$ {\prod}_{j=1}^{\mu-1} {{\varPhi}}[\hat{\mathbf{a}}_{j}]^{n_{j}}(1)\left( [{v^{\prime}_{n}}^{*}(X-\xi)]^{k}\right) =\left\{\begin{array}{rl} ({v^{\prime}_{n}}^{*}\hat{\mathbf{a}}_{1})^{k}, & {\sum}_{j=1}^{\mu-1} n_{j}=k \text{ and } n_{1}=k, \\ O(\epsilon), & {\sum}_{j=1}^{\mu-1} n_{j}=k \text{ and } n_{1}<k, \\ 0, & \text{otherwise.} \end{array} \right. $$
(49)

Since \({{\varPhi }}[\hat {\mathbf {a}}_1]^{\mu -1}\) is the only pure term of \({{\varPhi }}[\hat {\mathbf {a}}_1]\) in \(\hat {{{\varLambda }}}_{\mu -1}\) (other terms are mixed with at least one \({{\varPhi }}[\hat {\mathbf {a}}_j]\) for j = 2,…,μ − 1), combining (48) and (49), we derive

$$ \hat{{{\varLambda}}}_{\mu-1}\left( \left[{v^{\prime}_{n}}^{\ast}(X-x^{\prime})\right]^{k}\right)= \left\{\begin{array}{rl} O(\epsilon), & ~~~ k\leq\mu-2, \\ ({v^{\prime}_{n}}^{\ast}\hat{\mathbf{a}}_{1})^{\mu-1} +O(\epsilon), & ~~~ k=\mu-1. \end{array} \right. $$

For k = μ, combining (47) and (49), we derive

$$ \begin{array}{@{}rcl@{}} &&\hat{{{\varLambda}}}_{\mu-1}\left( \left[{v^{\prime}_{n}}^{\ast}(X-x^{\prime})\right]^{\mu}\right)\\ &=&\hat{{{\varLambda}}}_{\mu-1}\left( \left[{v^{\prime}_{n}}^{\ast}(X-\xi)\right]^{\mu}\right) +\hat{{{\varLambda}}}_{\mu-1}\left( {\mu}\left[{v^{\prime}_{n}}^{\ast}(X-\xi)\right]^{\mu-1} \left[{v^{\prime}_{n}}^{\ast}(\xi-x^{\prime})\right]\right)+O(\epsilon^{2})\\ &=& 0+\mu{v^{\prime}_{n}}^{\ast}(\xi-x^{\prime})({v^{\prime}_{n}}^{\ast}\hat{\mathbf{a}}_{1})^{\mu-1} +O(\epsilon^{2}). \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Zhi, L. Improved two-step Newton’s method for computing simple multiple zeros of polynomial systems. Numer Algor 91, 19–50 (2022). https://doi.org/10.1007/s11075-022-01253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01253-7

Keywords

Navigation