Skip to main content
Log in

A fast stable accurate artificial boundary condition for the linearized Green-Naghdi system

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we use a fully discrete Crank-Nicolson scheme to solve the Cauchy problem for one-dimensional linearized Green-Naghdi system with fast convolution boundary condition which is derived through the Padé approximation for the square root function. We also introduce a constant damping term to guarantee the stability. While the damping term meets certain conditions, the stability is proved for the numerical solutions with the fast convolution boundary condition. Therefore, the difficulty of numerical instability which rises in Kazakova and Noble (SIAM J. Num. Anal. 1, 657–683, 2020) is overcome. The computational cost of the convolution integral is reduced from \(\mathcal {O}(N^{2})\) to \(\mathcal {O}(N\ln (N))\) for the total number of time steps N. Numerical examples verify the theoretical results and demonstrate the performance for the fast numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lannes, D.: The water waves problem: Mathematical analysis and asymptotics, Providence (AMS) (2013)

  2. de Saint Venant, A.: Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et á l’introduction des marées dans leur lit. C. R. Math. Acad. Sci. Paris. 73, 147–154 (1871)

    MATH  Google Scholar 

  3. Green, A., Naghdi, P.: A derivation of equations for wave propagation in water of variable depth. J. Fluid. Mech. 78, 237–246 (1976)

    Article  Google Scholar 

  4. Lannes, D., Marche, F.: A new class of fully nonlinear and weakly dispersive Green–Naghdi models for efficient 2D simulations. J. Comput. Phys. 282, 238–268 (2015)

    Article  MathSciNet  Google Scholar 

  5. Duran, A., Marche, F.: Discontinuous–Galerkin discretization of a new class of Green-Naghdi equations. Commun. Comput. Phys. 17, 721–760 (2015)

    Article  MathSciNet  Google Scholar 

  6. Kazakova, M., Noble, P.: Discrete transparent boundary conditions for the linearized Green-Naghdi system of equations. SIAM J. Num. Anal. 1, 657–683 (2020)

    Article  MathSciNet  Google Scholar 

  7. Zheng, C., Du, Q., Ma, X., Zhang, J.: Stability and error analysis for a second-order fast approximation of the local and nonlocal diffusion equations on the real Line. SIAM J. Num. Anal. 58, 1893–1917 (2020)

    Article  MathSciNet  Google Scholar 

  8. Fevens, T., Jiang, H.: Absorbing boundary conditions for the Schrödinger equation. SIAM J. Sci. Comput. 21, 255–282 (1999)

    Article  MathSciNet  Google Scholar 

  9. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for the one-dimensional Schrödinger equation with an exterior repulsive potential. J. Comput. Phys. 228, 312–335 (2009)

    Article  MathSciNet  Google Scholar 

  10. Antoine, X., Besse, C.: Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation. J. Comput. Phys. 188, 157–175 (2003)

    Article  MathSciNet  Google Scholar 

  11. Wu, X., Sun, Z.: Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions. Appl. Nume. Math. 50, 261–277 (2004)

    Article  MathSciNet  Google Scholar 

  12. Baskakov, V., Popov, A.: Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion. 14, 123–128 (1991)

    Article  MathSciNet  Google Scholar 

  13. Han, H., Huang, Z.: Exact and approximating boundary conditions for the parabolic problems on unbounded domains. Comput. Mathe. Appl. 44, 655–666 (2002)

    Article  MathSciNet  Google Scholar 

  14. Han, H., Huang, Z.: Exact artificial boundary conditions for the Schrödinger equation in R2. Commun. Math. Sci. 2, 79–94 (2004)

    Article  MathSciNet  Google Scholar 

  15. Arnold, A., Ehrhardt, M., Schulte, M., Sofronov, I.: Discrete transparent boundary conditions for the Schrödinger equation on circular domains. Commun. Math. Sci. 10, 889–916 (2012)

    Article  MathSciNet  Google Scholar 

  16. Li, H., Wu, X., Zhang, J.: Local artificial boundary conditions for Schrödinger and heat equations by using high-order azimuth derivatives on circular artificial boundary. Comput. Phys. Commun. 185, 1606–1615 (2014)

    Article  MathSciNet  Google Scholar 

  17. Antoine, X., Besse, C., Mouysset, V.: Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions. Math Comput. 73, 1779–1799 (2004)

    Article  Google Scholar 

  18. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part II: discretization and numerical results. Num. Math. 125, 191–223 (2013)

    Article  Google Scholar 

  19. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33, 1008–1033 (2011)

    Article  MathSciNet  Google Scholar 

  20. Pang, G., Yang, Y., Antoine, X., Tang, S.: Stability and convergence analysis of artificial boundary conditions for the Schrödinger equation on a rectangular domain, Preprint

  21. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schaedle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4, 729–796 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Pang, G., Tang, S.: Approximate linear relations for Bessel functions. Commun. Math. Sci. 15, 1967–1986 (2017)

    Article  MathSciNet  Google Scholar 

  23. Pang, G., Bian, L., Tang, S.: Almost exact boundary condition for one-dimensional Schrödinger equation. Phys. Rev. E. 86, 066709 (2012)

    Article  Google Scholar 

  24. Ji, S., Yang, Y., Pang, G., Antoine, X.: Accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations on rectangular domains. Comput. Phys. Commun. 222, 84–93 (2018)

    Article  MathSciNet  Google Scholar 

  25. Arnold, A., Ehrhardt, M., Sofronov, I.: Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability. Commun. Math. Sci. 1, 501–556 (2003)

    Article  MathSciNet  Google Scholar 

  26. Jiang, S., Greengard, L.: Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension. Comput. Math. Appl. 47, 955–966 (2004)

    Article  MathSciNet  Google Scholar 

  27. Zheng, C.: Approximation, stability and fast evaluation of exact artificial boundary condition for one-dimensional heat equation,. J Comput. Math. 25, 730–745 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Alpert, B., Greengard, L., Hagstrom, T.: Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Num. Anal. 37, 1138–1164 (2000)

    Article  MathSciNet  Google Scholar 

  29. Lu, Y.: A Padé approximation method for square roots of symmetric positive definite matrices. SIAM J. Num. Anal. 19, 833–845 (1998)

    Article  Google Scholar 

  30. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Compt. 24, 161–182 (2002)

    Article  MathSciNet  Google Scholar 

  31. Li, B., Zhang, J., Zheng, C.: An efficient second-order finite difference method for the one-dimensional Schrödinger equation with absorbing boundary conditions. SIAM J. Num. Anal. 56, 766–791 (2018)

    Article  Google Scholar 

Download references

Funding

This research is partially supported by NSFC under grant Nos. 11832001 and 11502028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Pang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, G., Ji, S. A fast stable accurate artificial boundary condition for the linearized Green-Naghdi system. Numer Algor 90, 1437–1463 (2022). https://doi.org/10.1007/s11075-021-01236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01236-0

Keywords

Navigation