Skip to main content
Log in

A priori and a posteriori error analysis for virtual element discretization of elliptic optimal control problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

This article has been updated

Abstract

In this paper, a virtual element method (VEM) discretization of elliptic optimal control problem with pointwise control constraint is investigated. Virtual element discrete scheme is constructed based on virtual element approximation of the state equation and variational discretization of the control variable. A priori error estimates for state, adjoint state and control variable in H1 and L2 norms are derived. Due to the attractive flexibility of VEM in dealing with mesh refinement we also derive a posteriori error estimates for the optimal control problem, which are used to guide the mesh refinement in the adaptive VEM algorithm. Numerical experiments are carried out to illustrate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 02 February 2022

    Update on Funding number

References

  1. Casas, E., Tröltzsch, F.: Error estimates for the finite element approximation of a semilinear elliptic control problem. Control Cybernet. 31, 695–712 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Deckelnick, K., Hinze, M.: Convergence of a finite element approximation to a state-constrained elliptic control problem. SIAM J. Numer. Anal. 45 (5), 1937–1953 (2007)

    Article  MathSciNet  Google Scholar 

  3. Fu, H. F., Rui, H. X., Zhou, Z.J.: A posteriori error estimates for optimal control problems constrained by convection-diffusion equations. Front. Math. China 11(11), 55–75 (2016)

    Article  MathSciNet  Google Scholar 

  4. Niu, H. F., Yang, D. P.: Finite element analysis of optimal control problem governed by stokes equations with L2-norm state-constraints. J. Comput. Appl. Math. 29(5), 589–604 (2011)

    MATH  Google Scholar 

  5. Weng, Z. F., Yang, J. Z., Lu, X. L.: A stabilized finite element method for the convection dominated diffusion optimal control problem. Appl. Anal. 95(12), 2807–2823 (2016)

    Article  MathSciNet  Google Scholar 

  6. Zhou, Z. J., Gong, W.: Finite element approximation of optimal control problems governed by time fractional diffusion equation. Comput. Math. Appl. 71(1), 301–318 (2016)

    Article  MathSciNet  Google Scholar 

  7. Liu, W. B., Ma, H. P., Tang, T., Yan, N. N.: A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. Anal. 42(3), 1032–1061 (2004)

    Article  MathSciNet  Google Scholar 

  8. Yücel, H., Stoll, M., Benner, P.: A discontinuous Galerkin method for optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms. Comput. Math. Appl. 70(10), 2414–2431 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chen, Y. P., Huang, F. L.: Galerkin Spectral approximation of elliptic optimal control problems with H1-norm state constraint. J. Sci. Comput. 67, 65–83 (2016)

    Article  MathSciNet  Google Scholar 

  10. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM. J. Control Optim. 39(1), 113–132 (2000)

    Article  MathSciNet  Google Scholar 

  11. Liu, W. B., Yan, N. N.: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15(1-4), 285–309 (2001)

    Article  MathSciNet  Google Scholar 

  12. Hintermüller, M., Hoppe, R. H. W., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: Control Optim. Calc. Var. 14, 540–560 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Kohls, K., Rösch, A., Siebert, K. G.: A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52 (3), 1832–1861 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gong, W., Yan, N. N.: Adaptive finite element method for elliptic optimal control problems: convergence and optimality. Numer. Math. 135(4), 1124–1170 (2017)

    Article  MathSciNet  Google Scholar 

  15. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L. D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)

    Article  MathSciNet  Google Scholar 

  17. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci., 26(4), 729–750 (2016)

  18. Benedetto, M.F., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 311, 18–40 (2016)

  19. Cangiani, A., Manzini, G., Sutton, O. J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (3), 1317–1357 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54(6), 3411–3435 (2016)

    Article  MathSciNet  Google Scholar 

  21. Beirão da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Meth. Appl. M. 295, 327–346 (2015)

    Article  MathSciNet  Google Scholar 

  22. Beirão da Veiga, L., Manzini, G.: Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM Math. Model. Numer. Anal. 49(2), 577–599 (2015)

    Article  MathSciNet  Google Scholar 

  23. Berrone, S., Borio, A.: A residual a posteriori error estimate for the virtual element method. Math. Models Methods Appl. Sci. 27(8), 1423–1458 (2017)

    Article  MathSciNet  Google Scholar 

  24. Cangiani, A., Georgoulis, E. H., Pryer, T., Sutton, O. J.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)

    Article  MathSciNet  Google Scholar 

  25. Benedetto, M. F., Berrone, S., Borio, A., Pieraccini, S.: A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306, 148–166 (2016)

    Article  MathSciNet  Google Scholar 

  26. Berrone, S., Borio, A.: Orthogonal polynomials in badly shaped polygonal elements for the virtual element method. Finite Elem. Anal. Des. 129, 14–31 (2017)

    Article  MathSciNet  Google Scholar 

  27. Beirão da Veiga, L., Brezzi, F., Marini, L. D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24, 1541–1573 (2014)

    Article  MathSciNet  Google Scholar 

  28. Hinze, M.: A variational discretization concept in control constrained optimization: The linear-quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005)

  29. Wang, Q.M., Zhou, Z.J.: Adaptive virtual element method for optimal control problem governed by general elliptic equation. J. Sci. Comput. 88(1), 14 (2021)

  30. Talischi, C., Paulino, G. H., Pereira, A., Menezes, I. F. M.: Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45, 309–328 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research was supported by the NSFC of China (No. 11971276,11301311) and the NSFC of Shandong Province (No. ZR2016JL004, No. ZR2021MA049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojie Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhou, Z. A priori and a posteriori error analysis for virtual element discretization of elliptic optimal control problem. Numer Algor 90, 989–1015 (2022). https://doi.org/10.1007/s11075-021-01219-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01219-1

Keywords

Navigation