Skip to main content

Advertisement

Log in

Effective multigrid algorithms for algebraic system arising from static peridynamic systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Peridynamics is a nonlocal continuum theory that uses integral equations with no assumption of differentiability of displacement fields. One of the advantages of implicit type schemes for peridynamic systems is that they guarantee the equilibrium of the numerical solution, regardless of existing discontinuities on displacement fields. In this work, we propose multigrid algorithms for implicit discretizations of static peridynamic systems. The considerations are emphasized on the selection of horizon parameters at coarse levels. Among some versions, the multigrid algorithms which fix the horizon size at the coarse level are shown to be most efficient. In such case, the computational complexity of a smoothing (say Jacobi or Gauss-Seidel) at coarse level decreases by 1/16 as the level decreases. To enhance the efficiency of multigrid algorithms, the interpolation operator is modified near the crack on the underlying domain so that the energy-like norm does not blow up near the crack. In the numerical experiments, we report the performance of preconditioned conjugated gradient (PCG) preconditioned by our multigrid algorithms (MG-PCG). The computational complexity of MG-PCG is \(\mathcal {O}(N)\) where N implies the number of the unknowns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aksoylu, B., Unlu, Z.: Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces. SIAM J. Numer. Anal. 52, 653–677 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bobaru, F., Ha, Y.D., Hu, W.: Damage progression from impact in layered glass modeled with peridynamics. Central European Journal of Engineering 2, 551–561 (2012)

    Google Scholar 

  3. Bramble, J.H., Pasciak, J.E.: New convergence estimates for multigrid algorithms. Mathematics of Computation 49, 311–329 (1987)

    Article  MathSciNet  Google Scholar 

  4. Bramble, J.H., Pasciak, J.E.: The analysis of smoothers for multigrid algorithms. Math. Comput. 58, 467–488 (1992)

    Article  MathSciNet  Google Scholar 

  5. Bramble, J.H., Pasciak, J.E., Wang, J.P., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comput. 57, 23–45 (1991)

    Article  MathSciNet  Google Scholar 

  6. Bramble, J.H., Pasciak, J.E., Xu, J.: The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms. Math. Comput. 56, 1–34 (1991)

    Article  MathSciNet  Google Scholar 

  7. Breitenfeld, M., Geubelle, P., Weckner, O., Silling, S.: Non-ordinary state-based peridynamic analysis of stationary crack problems. Comput. Methods Appl. Mech. Eng. 272, 233–250 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chen, M., Deng, W.: Convergence analysis of a multigrid method for a nonlocal model. SIAM Journal on Matrix Analysis and Applications 38, 869–890 (2017)

    Article  MathSciNet  Google Scholar 

  9. Chou, S.-H., Kwak, D.Y.: Multigrid algorithms for a vertex–centered covolume method for elliptic problems. Numer. Math. 90, 441–458 (2002)

    Article  MathSciNet  Google Scholar 

  10. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM review 54, 667–696 (2012)

    Article  MathSciNet  Google Scholar 

  11. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Mathematical Models and Methods in Applied Sciences 23, 493–540 (2013)

    Article  MathSciNet  Google Scholar 

  12. Fedorenko, R.: The speed of convergence of one iterative process. USSR Comput. Math. Math. Phys. 4, 559–564 (1964)

    Google Scholar 

  13. Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162, 229–244 (2010)

    Article  Google Scholar 

  14. Ha, Y.D., Bobaru, F.: Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78, 1156–1168 (2011)

    Article  Google Scholar 

  15. Ha, Y.D.: An extended ghost interlayer model in peridynamic theory for high-velocity impact fracture of laminated glass structures. Computers and Mathematics with Applications 80, 744–761 (2020)

    Article  MathSciNet  Google Scholar 

  16. Hackbusch, W.: Multi-grid methods and applications, vol. 4 of Springer series in computational mathematics (1985)

  17. Hu, W., Ha, Y.D., Bobaru, F.: Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput. Methods Appl. Mech. Eng. 217-220, 217–220 (2012)

    Article  MathSciNet  Google Scholar 

  18. Hu, W., Wang, Y., Yu, J., Yen, C.-F., Bobaru, F.: Impact damage on a thin glass plate with a thin polycarbonate backing. International Journal of Impact Engineering 62, 152–165 (2013)

    Article  Google Scholar 

  19. Jha, P.K., Lipton, R.: Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics. Int. J. Numer. Methods Eng. 114, 1389–1410 (2018)

    Article  MathSciNet  Google Scholar 

  20. Jo, G., Kwak, D.Y.: Geometric multigrid algorithms for elliptic interface problems using structured grids. Numerical Algorithms 81, 211–235 (2019)

    Article  MathSciNet  Google Scholar 

  21. Jo, G., Kwak, D.Y.: A semi-uniform multigrid algorithm for solving elliptic interface problems. Computational Methods in Applied Mathematics, ahead-of-print (2020)

  22. Kwak, D.Y., Lee, J.S.: Multigrid algorithm for the cell-centered finite difference method ii: discontinuous coefficient case. Numerical Methods for Partial Differential Equations 20, 742–764 (2004)

    Article  MathSciNet  Google Scholar 

  23. LADANYI, G., JENEI, I.: Investigation of peridynamic plastic material model. In: Proceedings of the 4th IASME/WSEAS International Conference on Continuum Mechanics (CM’09) (2009)

  24. Le, Q., Bobaru, F.: Surface corrections for peridynamic models in elasticity and fracture. Comput. Mech. 61, 1–20 (2017)

    MathSciNet  MATH  Google Scholar 

  25. McCormick, S.F.: Multigrid methods, vol. 3. SIAM (1987)

  26. Napov, A., Notay, Y.: An algebraic multigrid method with guaranteed convergence rate. SIAM Journal on Scientific Computing 34, A1079–A1109 (2012)

    Article  MathSciNet  Google Scholar 

  27. Ni, T., Zaccariotto, M., Zhu, Q.-Z., Galvanetto, U.: Static solution of crack propagation problems in peridynamics. Comput. Methods Appl. Mech. Eng. 346, 126–151 (2019)

    Article  MathSciNet  Google Scholar 

  28. Notay, Y.: An aggregation-based algebraic multigrid method. Electronic Transactions on Numerical Analysis 37, 123–146 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Notay, Y.: Aggregation-based algebraic multigrid for convection-diffusion equations. SIAM Journal on Scientific Computing 34, A2288–A2316 (2012)

    Article  MathSciNet  Google Scholar 

  30. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids 48, 175–209 (2000)

    Article  MathSciNet  Google Scholar 

  31. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

    Article  MathSciNet  Google Scholar 

  32. Seleson, P., Ha, Y.D., Beneddine, S.: Concurrent coupling of bond-based peridynamics and the navier equation of classical elasticity by blending. Internaonal Journal for Multiscale Computational Engineering 13(2), 91–113 (2015)

    Article  Google Scholar 

  33. Stüben, K.: Algebraic multigrid (amg): experiences and comparisons. Applied Mathematics and Computation 13, 419–451 (1983)

    Article  MathSciNet  Google Scholar 

  34. Stüben, K.: A review of algebraic multigrid. Numerical analysis: Historical Developments in the 20th Century. Elsevier, pp. 331–359 (2001)

  35. Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51, 3458–3482 (2013)

    Article  MathSciNet  Google Scholar 

  36. Tian, X., Du, Q.: Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52, 1641–1665 (2014)

    Article  MathSciNet  Google Scholar 

  37. Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56, 179–196 (1996)

    Article  MathSciNet  Google Scholar 

  38. Van, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregation. Numer. Math. 88, 559–579 (2001)

    Article  MathSciNet  Google Scholar 

  39. Xu, J., Zikatanov, L.: Algebraic multigrid methods. Acta Numerica 26, 591–721 (2017)

    Article  MathSciNet  Google Scholar 

  40. Zaccariotto, M., Luongo, F., Galvanetto, U.: Examples of applications of the peridynamic theory to the solution of static equilibrium problems. The Aeronautical Journal 119, 677–700 (2015)

    Article  Google Scholar 

  41. Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48, 1759–1780 (2010)

    Article  MathSciNet  Google Scholar 

  42. Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)

    Article  Google Scholar 

Download references

Funding

The first author, G. Jo, received financial support from the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1A01005396). The corresponding author, Y.D. Ha, received financial support from the National Research Foundation of Korea (NRF) funded by the Korea government(MSIT) (No. 2018R1D1A1B07049124) and the Human Resources Development Program (No. 20194010201800) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Ministry of Trade, Industry, and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn Doh Ha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, G., Ha, Y.D. Effective multigrid algorithms for algebraic system arising from static peridynamic systems. Numer Algor 89, 885–904 (2022). https://doi.org/10.1007/s11075-021-01138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01138-1

Keywords

Navigation