Skip to main content
Log in

A High-Order Shifted Boundary Virtual Element Method for Poisson Equations on 2D Curved Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a high-order virtual element method for Poisson problems with non-homogeneous Dirichlet boundary condition on 2D domains with curved boundary. The scheme is designed on unfitted polygonal meshes. It borrows the idea of the shifted boundary method proposed by Main and Scovazzi (J Comput Phys 372:972–995, 2018) for treating the curved boundary. We prove the stability and the optimal error estimate in energy norm for the proposed method. For the \(L^2\) norm, although suboptimal error estimate is proved theoretically, numerical results appear to be optimal. Supporting numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Atallah, N.M., Canuto, C., Scovazzi, G.: The second-generation shifted boundary method and its numerical analysis. Comput. Methods Appl. Mech. Eng. 372, 113341 (2020)

    Article  MathSciNet  Google Scholar 

  2. Atallah, N.M., Canuto, C., Scovazzi, G.: Analysis of the shifted boundary method for the Stokes problem. Comput. Methods Appl. Mech. Eng. 358, 112609 (2020)

    Article  MathSciNet  Google Scholar 

  3. Atallah, N.M., Canuto, C., Scovazzi, G.: Analysis of the shifted boundary method for the Poisson problem in domains with corners. Math. Comput. 90, 2041–2069 (2021)

    Article  MathSciNet  Google Scholar 

  4. Atallah, N.M., Canuto, C., Scovazzi, G.: The high-order shifted boundary method and its analysis. Comput. Methods Appl. Mech. Eng. 394, 114885 (2022)

    Article  MathSciNet  Google Scholar 

  5. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, W., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51, 794–812 (2013)

    Article  MathSciNet  Google Scholar 

  7. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Polynomial preserving virtual elements with curved edges. Math. Models Methods Appl. Sci. 30, 1555–1590 (2020)

    Article  MathSciNet  Google Scholar 

  8. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27, 2557–2594 (2017)

    Article  MathSciNet  Google Scholar 

  9. Beirão da Veiga, L., Russo, A., Vacca, G.: The Virtual Element Method with curved edges. ESAIM Math. Model. Numer. Anal. 53, 375–404 (2019)

    Article  MathSciNet  Google Scholar 

  10. Berger, A., Scott, L.R., Strang, G.: Approximate Boundary Conditions in the Finite Element Method, Symposia Mathematica, X, pp. 295–313. Academic Press, New York (1972)

    Google Scholar 

  11. Bertoluzza, S., Pennacchio, M., Prada, D.: High order VEM on curved domains. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 30, 391–412 (2019)

  12. Bertoluzza, S., Pennacchio, M., Prada, D.: Weakly imposed Dirichlet boundary conditions for 2D and 3D virtual elements. Comput. Methods Appl. Mech. Eng. 400, 115454 (2022)

    Article  MathSciNet  Google Scholar 

  13. Blair, J.J.: Bounds for the change in the solutions of second order elliptic PDE’s when the boundary is perturbed. SIAM J. Appl. Math. 24, 277–285 (1973)

    Article  MathSciNet  Google Scholar 

  14. Bramble, J.H., Dupont, T., Thomée, V.: Projection methods for Dirichlets problem in approximating polygonal domains with boundary-value corrections. Math. Comput. 26, 869–879 (1972)

    MathSciNet  Google Scholar 

  15. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008)

    Book  Google Scholar 

  16. Brenner, S.C., Sung, L.Y.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28, 1291–1336 (2018)

    Article  MathSciNet  Google Scholar 

  17. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    Article  MathSciNet  Google Scholar 

  18. Burman, E., Hansbo, P., Larson, M.G.: A cut finite element method with boundary value correction. Math. Comput. 87, 633–657 (2018)

    Article  MathSciNet  Google Scholar 

  19. Cao, S.H., Chen, L.: Anisotropic error estimates of the linear virtual element method on polygonal meshes. SIAM J. Numer. Anal. 56, 2913–2939 (2018)

    Article  MathSciNet  Google Scholar 

  20. Cao, S.H., Chen, L.: Anisotropic error estimates of the linear nonconforming virtual element methods. SIAM J. Numer. Anal. 57, 1058–1081 (2019)

    Article  MathSciNet  Google Scholar 

  21. Chen, L.: iFEM: An integrated finite element methods, package in MATLAB. Technical Report, University of California at Irvine (2009)

  22. Chen, L., Huang, J.: Some error analysis on virtual element method. Calcolo 55, 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  23. Cheung, J., Perego, M., Bochev, P., Gunzburger, M.: Optimally accurate higher-order finite element methods on polytopial approximations of domains with smooth boundaries. Math. Comput. 88, 2187–2219 (2019)

    Article  MathSciNet  Google Scholar 

  24. Cockburn, B., Gupta, D., Reitich, F.: Boundary-conforming discontinuous Galerkin methods via extensions from subdomains. J. Sci. Comput. 42, 144–184 (2009)

    Article  MathSciNet  Google Scholar 

  25. Cockburn, B., Qiu, W., Solano, M.: A priori error analysis for HDG methods using extensions from subdomains to achieve boundary conformity. Math. Comput. 83, 665–699 (2014)

    Article  MathSciNet  Google Scholar 

  26. Cockburn, B., Solano, M.: Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains. SIAM J. Sci. Comput. 34, A497–A519 (2012)

    Article  MathSciNet  Google Scholar 

  27. Cockburn, B., Solano, M.: Solving convection–diffusion problems on curved domains by extensions from subdomains. J. Sci. Comput. 59, 512–543 (2014)

    Article  MathSciNet  Google Scholar 

  28. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009)

    Book  Google Scholar 

  29. Ergatoudis, I., Irons, B., Zienkiewicz, O.: Curved, isoparametric, quadrilateral elements for finite element analysis. Int. J. Solids Struct. 4, 31–42 (1968)

    Article  Google Scholar 

  30. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  Google Scholar 

  31. Lenoir, M.: Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23, 562–580 (1986)

    Article  MathSciNet  Google Scholar 

  32. Liu, H., Neilan, M., Baris Otus, M.: A divergence-free finite element method for Stokes problem with boundary correction. Commun. Comput. Phys. 32, 1094–1128 (2022)

    Article  MathSciNet  Google Scholar 

  33. Liu, Y., Chen, W., Wang, Y.: A weak Galerkin mixed finite element method for second order elliptic equations on 2D curved domains. Commun. Comput. Phys. 32, 1094–1128 (2022)

    Article  MathSciNet  Google Scholar 

  34. Main, A., Scovazzi, G.: The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. J. Comput. Phys. 372, 972–995 (2018)

    Article  MathSciNet  Google Scholar 

  35. Pande, S., Papadopoulos, P., Babuška, I.: A cut-cell finite element method for Poisson’s equation on arbitrary planar domains. Comput. Methods Appl. Mech. Eng. 383, 113875 (2021)

    Article  MathSciNet  Google Scholar 

  36. Strang, G.: Variational crimes in the finite element method. In: Aziz, A.K. (ed.) The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp. 689–710. Academic Press, New York (1972)

    Chapter  Google Scholar 

  37. Strang, G., Berger, A.E.: The change in solution due to change in domain. In: Spencer, D.C. (ed.) Partial Differential Equations, Proceedings of Symposia in Pure Mathematics, vol. 23. American Mathematical Society, Providence, pp 199–205 (1973)

  38. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidisc. Optim. 45, 309–328 (2012)

    Article  MathSciNet  Google Scholar 

  39. Thomée, V.: Polygonal domain approximation in Dirichlet’s problem. IMA J. Appl. Math. 11, 33–44 (1973)

    Article  MathSciNet  Google Scholar 

  40. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the editor and referees for their valuable suggestions and comments. This work was supported by the National Natural Science Foundation of China (Grant No. 12171244).

Funding

The research was supported by the National Natural Science Foundation of China (Grant No. 12171244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqiu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no relevant Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Liu, Y. & Wang, Y. A High-Order Shifted Boundary Virtual Element Method for Poisson Equations on 2D Curved Domains. J Sci Comput 99, 85 (2024). https://doi.org/10.1007/s10915-024-02552-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02552-y

Keywords

Mathematics Subject Classification

Navigation