Skip to main content
Log in

A novel alternating-direction implicit spectral Galerkin method for a multi-term time-space fractional diffusion equation in three dimensions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we develop an efficient spectral Galerkin method for the three-dimensional (3D) multi-term time-space fractional diffusion equation. Based on the L2-1σ formula for time stepping and the Legendre-Galerkin spectral method for space discretization, a fully discrete numerical scheme is constructed and the stability and convergence analyses are rigorously established. The results show that the fully discrete scheme is unconditionally stable and has second-order accuracy in time and optimal error estimation in space. In addition, we give the detailed implementation and apply the alternating-direction implicit (ADI) method to reduce the computational complexity. Furthermore, numerical experiments are presented to confirm the theoretical claims. As an application of the proposed method, the fractional Bloch-Torrey model is also solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alikhanov, A. A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015). https://doi.org/10.1016/j.jcp.2014.09.031

    MathSciNet  MATH  Google Scholar 

  2. Alikhanov, A. A.: Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation. Appl. Math. Comput. 268, 12–22 (2015). https://doi.org/10.1016/j.amc.2015.06.045

    MathSciNet  MATH  Google Scholar 

  3. Berkowitz, B., Klafter, J., Metzler, R., Scher, H.: Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations. Water Resour. Res. 38(10), 9–1–9-12 (2002). https://doi.org/10.1029/2001WR001030

    Google Scholar 

  4. Chen, R., Liu, F., Anh, V.: A fractional alternating-direction implicit method for a multi-term time–space fractional Bloch–Torrey equations in three dimensions. Comput. Math Appl. https://doi.org/10.1016/j.camwa.2018.11.035 (2018)

  5. Chen, S., Liu, F., Jiang, X., Turner, I., Burrage, K.: Fast finite difference approximation for identifying parameters in a two-dimensional space-fractional nonlocal model with variable diffusivity coefficients. SIAM. J. Numer. Anal. 54(2), 606–624 (2016). https://doi.org/10.1137/15M1019301

    MathSciNet  MATH  Google Scholar 

  6. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015). https://doi.org/10.1016/j.cam.2015.04.03

    MathSciNet  MATH  Google Scholar 

  7. Ervin, V. J., Roop, J. P.: Variational solution of fractional advection dispersion equations on bounded domains in \(\mathbb {R}^d\). Numer. Methods Partial Differ. Equ. 23 (2), 256–281 (2007). https://doi.org/10.1002/num.20169

    MathSciNet  MATH  Google Scholar 

  8. Fan, W., Jiang, X., Liu, F., Anh, V.: The unstructured mesh finite element method for the two-dimensional multi-term time-space fractional diffusion-wave equation on an irregular convex domain. J. Sci. Comput. 77(1), 27–52 (2018). https://doi.org/10.1007/s10915-018-0694-x

    MathSciNet  MATH  Google Scholar 

  9. Fan, W., Liu, F., Jiang, X., Turner, I.: Some novel numerical techniques for an inverse problem of the multi-term time fractional partial differential equation. J. Comput. Appl. Math. 336, 114–126 (2018). https://doi.org/10.1016/j.cam.2017.12.034

    MathSciNet  MATH  Google Scholar 

  10. Feng, L., Liu, F., Turner, I.: Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains. Commun. Nonlinear Sci. Numer. Simul. 70, 354–371 (2019). https://doi.org/10.1016/j.cnsns.2018.10.016

    MathSciNet  MATH  Google Scholar 

  11. Feng, L., Liu, F., Turner, I., Yang, Q., Zhuang, P.: Unstructured mesh finite difference/finite element method for the 2D time-space Riesz fractional diffusion equation on irregular convex domains. Appl. Math. Model. 59, 441–463 (2018). https://doi.org/10.1016/j.apm.2018.01.044

    MathSciNet  MATH  Google Scholar 

  12. Feng, L., Liu, F., Turner, I., Zheng, L.: Novel numerical analysis of multi-term time fractional viscoelastic non-newtonian fluid models for simulating unsteady MHD Couette flow of a generalized O ldroyd-B fluid. Fract. Calc. Appl. Anal. 21(4), 1073–1103 (2018). https://doi.org/10.1515/fca-2018-0058

    MathSciNet  MATH  Google Scholar 

  13. Gao, G., Alikhanov, A. A., Sun, Z.: The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J. Sci. Comput. 73(1), 93–121 (2017). https://doi.org/10.1007/s10915-017-0407-x

    MathSciNet  MATH  Google Scholar 

  14. Gao, G.h., Sun, H.w., Sun, Z.z.: Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015). https://doi.org/10.1016/j.jcp.2015.05.047

    MathSciNet  MATH  Google Scholar 

  15. Gao, G.h., Sun, Z.z.: Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66 (3), 1281–1312 (2016). https://doi.org/10.1007/s10915-015-0064-x

    MathSciNet  MATH  Google Scholar 

  16. Gao, G.h., Sun, Z.z., Zhang, H.w.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014). https://doi.org/10.1016/j.jcp.2013.11.017

    MathSciNet  MATH  Google Scholar 

  17. Huang, J., Nie, N., Tang, Y.: A second order finite difference-spectral method for space fractional diffusion equations. Sci. China Math. 57(6), 1303–1317 (2014). https://doi.org/10.1007/s11425-013-4716-8

    MathSciNet  MATH  Google Scholar 

  18. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015). https://doi.org/10.1016/j.jcp.2014.10.051

    MathSciNet  MATH  Google Scholar 

  19. Kou, S. C.: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat. 2(2), 501–535 (2008). https://doi.org/10.1214/07-AOAS149

    MathSciNet  MATH  Google Scholar 

  20. Li, J., Liu, F., Feng, L., Turner, I.: A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput. Math. Appl. 74(4), 772–783 (2017). https://doi.org/10.1016/j.camwa.2017.05.017

    MathSciNet  MATH  Google Scholar 

  21. Li, J., Liu, F., Feng, L., Turner, I.: A novel finite volume method for the Riesz space distributed-order advection-diffusion equation. Appl. Math. Model. 46, 536–553 (2017). https://doi.org/10.1016/j.apm.2017.01.065

    MathSciNet  MATH  Google Scholar 

  22. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007). https://doi.org/10.1016/j.jcp.2007.02.001

    MathSciNet  MATH  Google Scholar 

  23. Lin, Z., Liu, F., Wang, D., Gu, Y: Reproducing kernel particle method for two-dimensional time-space fractional diffusion equations in irregular domains. Eng. Anal. Boundary Elem. 97, 131–143 (2018). https://doi.org/10.1016/j.enganabound.2018.10.002

    MathSciNet  MATH  Google Scholar 

  24. Liu, F., Anh, V., Turner, I: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166(1), 209–219 (2004). https://doi.org/10.1016/j.cam.2003.09.028

    MathSciNet  MATH  Google Scholar 

  25. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191(1), 12–20 (2007). https://doi.org/10.1016/j.amc.2006.08.162

    MathSciNet  MATH  Google Scholar 

  26. Liu, F., Meerschaert, M., McGough, R., Zhuang, P., Liu, Q: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16(1), 9–25 (2013). https://doi.org/10.2478/s13540-013-0002-2

    MathSciNet  MATH  Google Scholar 

  27. Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Modell. 38(15-16), 3871–3878 (2014). https://doi.org/10.1016/j.apm.2013.10.007

    MathSciNet  MATH  Google Scholar 

  28. Liu, F., Zhuang, P., Turner, I., Anh, V., Burrage, K: A semi-alternating direction method for a 2-D fractional FitzHugh–Nagumo monodomain model on an approximate irregular domain. J. Comput. Phys. 293, 252–263 (2015). https://doi.org/10.1016/j.jcp.2014.06.001

    MathSciNet  MATH  Google Scholar 

  29. Liu, F., Zhuang, P., Liu, Q: Numerical Methods of Fractional Partial Differential Equations and Applications. Science Press, China (2015)

    Google Scholar 

  30. Liu, F., Feng, L., Anh, V., Li, J: Unstructured-mesh G alerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregular convex domains. Comput. Math. Appl. 78, 1637–1650 (2019). https://doi.org/10.1016/j.camwa.2019.01.007

    MathSciNet  MATH  Google Scholar 

  31. Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014). https://doi.org/10.1016/j.amc.2013.10.008

    MathSciNet  MATH  Google Scholar 

  32. Liu, Z., Liu, F., Zeng, F.: An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations. Appl. Numer. Math. 136, 139–151 (2019). https://doi.org/10.1016/j.apnum.2018.10.005

    MathSciNet  MATH  Google Scholar 

  33. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986). https://doi.org/10.1137/0517050

    MathSciNet  MATH  Google Scholar 

  34. Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374(2), 538–548 (2011). https://doi.org/10.1016/j.jmaa.2010.08.048

    MathSciNet  MATH  Google Scholar 

  35. Meerschaert, M. M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004). https://doi.org/10.1016/j.cam.2004.01.033

    MathSciNet  MATH  Google Scholar 

  36. Metzler, R., Jeon, J. H., Cherstvy, A. G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16(44), 24,128–24,164 (2014). https://doi.org/10.1039/c4cp03465a

    Google Scholar 

  37. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37(31), R161 (2004). https://doi.org/10.1088/0305-4470/37/31/R01

    MathSciNet  MATH  Google Scholar 

  38. Nigmatullin, R.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Stat. Sol. B 133(1), 425–430 (1986). https://doi.org/10.1002/pssb.2221330150

    Google Scholar 

  39. Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, vol. 111. Elsevier (1974)

  40. Podlubny, I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications, vol. 198. Elsevier (1998)

  41. Qin, S., Liu, F., Turner, I., Vegh, V., Yu, Q., Yang, Q.: Multi-term time-fractional Bloch equations and application in magnetic resonance imaging. J. Comput. Appl. Math. 319, 308–319 (2017). https://doi.org/10.1016/j.cam.2017.01.018

    MathSciNet  MATH  Google Scholar 

  42. Qin, S., Liu, F., Turner, I. W.: A 2D multi-term time and space fractional Bloch-Torrey model based on bilinear rectangular finite elements. Commun. Nonlinear Sci. Numer. Simul. 56, 270–286 (2018). https://doi.org/10.1016/j.cnsns.2017.08.014

    MathSciNet  MATH  Google Scholar 

  43. Roop, J. P.: Variational Solution of the Fractional Advection Dispersion Equation. Ph.D. thesis, Clemson University (2004)

  44. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications Springer Series in Computational Mathematics, vol. 41. Springer, Berlin. https://doi.org/10.1007/978-3-540-71041-7 (2011)

  45. Shi, Y. H., Liu, F., Zhao, Y. M., Wang, F. L., Turner, I.: An unstructured mesh finite element method for solving the multi-term time fractional and Riesz space distributed-order wave equation on an irregular convex domain. Appl. Math. Model. 73, 615–636 (2019). https://doi.org/10.1016/j.apm.2019.04.023

    MathSciNet  MATH  Google Scholar 

  46. Shiralashetti, S. C., Deshi, A. B.: An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations. Nonlinear Dynam. 83(1-2), 293–303 (2016). https://doi.org/10.1007/s11071-015-2326-4

    MathSciNet  Google Scholar 

  47. Srivastava, V., Rai, K. N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Modelling 51(5-6), 616–624 (2010). https://doi.org/10.1016/j.mcm.2009.11.002

    MathSciNet  MATH  Google Scholar 

  48. Sun, Z.z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006). https://doi.org/10.1016/j.apnum.2005.03.003

    MathSciNet  MATH  Google Scholar 

  49. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84(294), 1703–1727 (2015). https://doi.org/10.1090/S0025-5718-2015-02917-2

    MathSciNet  MATH  Google Scholar 

  50. Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1(2), 167–191 (1998)

    MathSciNet  MATH  Google Scholar 

  51. Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8(5), 1016–1051 (2010). https://doi.org/10.4208/cicp.020709.221209a

    MathSciNet  MATH  Google Scholar 

  52. Zheng, M., Liu, F., Anh, V., Turner, I.: A high-order spectral method for the multi-term time-fractional diffusion equations. Appl. Math. Model. 40, 4970–4985 (2016). https://doi.org/10.1016/j.apm.2015.12.011

    MathSciNet  MATH  Google Scholar 

  53. Ye, H., Liu, F., Anh, V., Turner, I.: Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations. Appl. Math. Comput. 227, 531–540 (2014). https://doi.org/10.1016/j.amc.2013.11.015

    MathSciNet  MATH  Google Scholar 

  54. Liu, Z., Zeng, S., Bai, Y.: Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19(1), 188–211 (2016). https://doi.org/10.1515/fca-2016-0011

    MathSciNet  MATH  Google Scholar 

  55. Wang, Y., Mei, L., Li, Q., Bu, L.: Split-step spectral G alerkin method for the two-dimensional nonlinear space-fractional Schrö dinger equation. Appl. Numer. Math. 136, 257–278 (2019). https://doi.org/10.1016/j.apnum.2018.10.012

    MathSciNet  Google Scholar 

  56. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014). https://doi.org/10.1016/j.jcp.2014.08.012

    MathSciNet  MATH  Google Scholar 

  57. Yang, Q., Turner, I., Liu, F., Ilić, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33(3), 1159–1180 (2011). https://doi.org/10.1137/100800634

    MathSciNet  MATH  Google Scholar 

  58. Yu, Q., Liu, F., Turner, I., Burrage, K.: A computationally effective alternating direction method for the space and time fractional B loch-Torrey equation in 3-D. Appl. Math. Comput. 219(8), 4082–4095 (2012). https://doi.org/10.1016/j.amc.2012.10.056

    MathSciNet  MATH  Google Scholar 

  59. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM. J. Numer. Anal. 52(6), 2599–2622 (2014). https://doi.org/10.1137/130934192

    MathSciNet  MATH  Google Scholar 

  60. Anh, V.V., Leonenko, N.N.: Spectral analysis of fractional kinetic equations with random data. J. Statist. Phys. 104(5-6), 1349–1387 (2001). https://doi.org/10.1023/A:1010474332598

    MathSciNet  MATH  Google Scholar 

  61. Zhang, H., Liu, F., Turner, I., Chen, S.: The numerical simulation of the tempered fractional Black-Scholes equation for E uropean double barrier option. Appl. Math. Model. 40(11-12), 5819–5834 (2016). https://doi.org/10.1016/j.apm.2016.01.027

    MathSciNet  MATH  Google Scholar 

  62. Zhao, X., Sun, Z., Hao, Z.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36(6), A2865–A2886 (2014). https://doi.org/10.1137/140961560

    MATH  Google Scholar 

  63. Zheng, M., Liu, F., Turner, I., Anh, V.: A novel high order space-time spectral method for the time fractional Fokker-Planck equation. SIAM J. Sci. Comput. 37(2), A701–A724 (2015). https://doi.org/10.1137/140980545

    MathSciNet  MATH  Google Scholar 

  64. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46(2), 1079–1095 (2008). https://doi.org/10.1137/060673114

    MathSciNet  MATH  Google Scholar 

  65. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47(3), 1760–1781 (2009). https://doi.org/10.1137/080730597

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (No.11501441 and 11772046), the Science Challenge Project (No. TZ2016002) and the Australian Research Council via the Discovery Projects (DP180103858 and DP190101889).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawang Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, F., Mei, L. et al. A novel alternating-direction implicit spectral Galerkin method for a multi-term time-space fractional diffusion equation in three dimensions. Numer Algor 86, 1443–1474 (2021). https://doi.org/10.1007/s11075-020-00940-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00940-7

Keywords

Navigation