Skip to main content
Log in

A numerical algorithm for blow-up problems revisited

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In many evolution equations, solutions may become unbounded in finite time. This phenomenon is often called blow-up and the finite time is called the blow-up time. To numerically reproduce the finite-time blow-up phenomenon, schemes with adaptive time meshes were considered to be necessary. Since the numerical blow-up time is defined by an infinite sum, which implies that one needs to compute infinite times to achieve blow-up, this method cannot be carried out in real computation. As a consequence, Cho (Jpn. J. Indust. Appl. Math. 30, 331–349 2013) proposed an algorithm accomplished by schemes with uniform time meshes for the computation of blow-up solutions. In this paper, we are concerned with a question: to what extent can this algorithm be applied to compute the blow-up solutions and reproduce the blow-up behavior?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abia, L.M., López-Marcos, J.C., Martínez, J.: The Euler method in the numerical integration of reaction-diffusion problems with blow-up. Appl. Numer. Math. 38, 287–313 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandle, C., Brunner, H.: Numerical analysis of semilinear parabolic problems with blow-up solutions. Rev. R. Acad. Sync. Exactax. Fis. Natre. Madrid 88, 203–222 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L.A., Friedman, A.: Differentiability of the blow-up curve for one dimensional nonlinear wave equation. Arch. Rational Mech. Anal. 91, 83–98 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L.A., Friedman, A.: The blow-up boundary for nonlinear wave equations. Trans. Amer. Math. Soc. 297(1), 223–241 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L.A., Friedman, A.: Blow-up of solutions of nonlinear heat equations. J. Math. Anal. Appl. 129, 409–419 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y.-G.: Asymptotic behaviours of blowing-up solutions for finite difference analogue of u t = u x x + u 1 + α. J. Fac. Sci., Univ. Tokyo 33, 541–574 (1986)

  7. Chen, Y.-G.: Blow-up solutions to a finite difference analogue of u t = u x x + u 1 + α in N-dimensional balls. Hokkaido Math. J. 21, 447–474 (1992)

  8. Cho, C.-H.: A finite difference scheme for blow-up solutions of nonlinear wave equations. Numer. Math. Theor. Meth. Appl. 4(3), 475–498 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Cho, C.-H.: On the convergence of numerical blow-up time for a second order nonlinear ordinary differential equation. Appl. Math. Lett. 24(1), 49–54 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cho, C.-H.: On the finite difference approximation for blow-up solutions of the porous medium equation with a source. Appl. Numer. Math. 65, 1–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cho, C.-H.: On the computation of the numerical blow-up time. Jpn. J. Indust. Appl. Math. 30, 331–349 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cho, C.-H.: Numerical detection of blow-up: a new sufficient condition for blow-up. J.pan J. Indust. Appl. Math. 33, 81–98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cho, C.-H.: On the computation for blow-up solutions of the nonlinear wave equation, submitted to Numer. Math.

  14. Cho, C.-H., Hamada, S., Okamoto, H.: On the finite difference approximation for a parabolic blow-up problem. J.pan J. Indus. Appl. Math. 24(2), 131–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cho, C.-H., Okamoto, H.: Further remarks on asymptotic behavior of the numerical solutions of parabolic blow-up problems. Methods Appl. Anal. 14(3), 213–226 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Fila, M., Matano, H., Polácik, P.: Immediate regularization after blow-up. SIAM J. Math. Anal. 37, 752–776 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Filbet, F.: A finite volume scheme for Patlak-Keller-Segel chemotaxis model. Numer. Math. 104, 457–488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Friedman, A., McLeod, B.: Blow-up of positive solutions of semilinear heat equation. Indiana Univ. Math. J. 34(2), 425–447 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Giga, Y., Kohn, R. V.: Characterizing blow-up using similarity variables. Indiana Univ. Math. J. 36(1), 1–40 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grauer, R., Sideris, T.C.: Numerical computation of 3D incompressible fluids with swirl. Phys. Rev. Lett. 67, 3511–3514 (1991)

    Article  Google Scholar 

  21. Groisman, P.: Totally discrete explicit and semi-implicit Euler methods for a blow-up problem in several space dimensions. Computing 76, 325–352 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hamada, S.: On the blow-up problems for the generalized Proudman-Johnson equation. Proc. Japan SIAM 19, 1–23 (2009). (in Japanese)

  23. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I. Jahresber. Deutsch. Math.-Verein. 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II. Jahresber. Deutsch. Math.-Verein. 106, 51–89 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Huang, W.-Z., Ma, J.-T., Russell, R.D.: A study of moving mesh PDE methods for numerical simulation of blowup in reaction diffusion equations. J. Comput. Phys. 227, 6532–6552 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Itô, S.: On blow-up of positive solutions of semilinear parabolic equations. J. Fac. Sci. Univ. Tokyo Sec. IA 37, 527–536 (1990)

    MathSciNet  MATH  Google Scholar 

  27. Lacey, A.A.: Global blow-up of a nonlinear heqt equation. Proc. R. Soc. Edin. 104 A, 161–167 (1986)

    Article  MATH  Google Scholar 

  28. Levine, H.: Instability and nonexistence of global solutions to nonlinear wave equations of the form P u t t =−A u + F(u). Tran. Amer. Math. Soc. 192, 1–21 (1974)

  29. Moriguchi, N.: Various behaviors of solutions for a semilinear heat equation after blowup. J. Func. Anal. 220, 214–227 (2005)

    Article  MathSciNet  Google Scholar 

  30. Moriguchi, N.: Multiple blowup of solutions for a semilinear heat equation. Math. Ann. 331, 461–473 (2005)

    Article  MathSciNet  Google Scholar 

  31. Moriguchi, N.: On the uniqueness of L 1-continuation after blowup. J. Func. Anal. 254, 2893–2910 (2008)

    Article  Google Scholar 

  32. Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Nagai, T., Senba, T.: Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis. Adv. Math. Sci. Appl. 8, 145–156 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Nakagawa, T.: Blowing up of a finite difference solution to u t = u x x + u 2. Appl. Math. Optim. 2, 337–350 (1976)

  35. Saito, N.: Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis. IMA J. Numer. Anal. 27, 332–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ren, W., Wang, X.-P.: An iterative grid redistribution method for singular problems in multiple dimensions. J. Comput. Phys. 159, 246–273 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Saito, N.: Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Commun. Pure Appl. Anal. 11(1), 339–364 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Saito, N., Sasaki, T.: Blow-up of finite-difference solutions to nonlinear wave equations. J. Math. Sci. Univ. Tokyo 23(1), 349–380 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Saito, N., Suzuki, T.: Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis. Appl. Math. Comput. 171, 72–90 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Stuart, A.M., Floater, M.S.: On the computation of blow-up. Euro. J. Appl. Math. 1, 47–71 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Weissler, F.: Single point blowup of semilinear initial value problems. J. Diff. Eqns. 55, 202–224 (1984)

    Article  Google Scholar 

  42. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pure Appl. 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, Z.-W., Brunner, H.: Blow-up behavior of collocation solutions to Hammerstein-type Volterra integral equations. SIAM J. Numer. Anal. 51, 2260–2282 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhou, G.-Y., Saito, N.: Finite volume methods for a Keller-Segel system: Discrete energy, error estimates and numerical blow-up analysis. Numer. Math. doi:10.1007/s00211-016-0793-2 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-H. Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, CH. A numerical algorithm for blow-up problems revisited. Numer Algor 75, 675–697 (2017). https://doi.org/10.1007/s11075-016-0216-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0216-6

Keywords

Navigation