Skip to main content
Log in

Error analysis of Jacobi derivative estimators for noisy signals

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Recent algebraic parametric estimation techniques (see Fliess and Sira-Ramírez, ESAIM Control Optim Calc Variat 9:151–168, 2003, 2008) led to point-wise derivative estimates by using only the iterated integral of a noisy observation signal (see Mboup et al. 2007, Numer Algorithms 50(4):439–467, 2009). In this paper, we extend such differentiation methods by providing a larger choice of parameters in these integrals: they can be reals. For this, the extension is done via a truncated Jacobi orthogonal series expansion. Then, the noise error contribution of these derivative estimations is investigated: after proving the existence of such integral with a stochastic process noise, their statistical properties (mean value, variance and covariance) are analyzed. In particular, the following important results are obtained:

  1. (a)

    the bias error term, due to the truncation, can be reduced by tuning the parameters,

  2. (b)

    such estimators can cope with a large class of noises for which the mean and covariance are polynomials in time (with degree smaller than the order of derivative to be estimated),

  3. (c)

    the variance of the noise error is shown to be smaller in the case of negative real parameters than it was in Mboup et al. (2007, Numer Algorithms 50(4):439–467, 2009) for integer values.

Consequently, these derivative estimations can be improved by tuning the parameters according to the here obtained knowledge of the parameters’ influence on the error bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  2. Al-Alaoui, M.A.: A class of second-order integrators and low-pass differentiators. IEEE Trans. Circuits Syst. I 42(4), 220–223 (1995)

    Article  Google Scholar 

  3. Chen, C.K., Lee, J.H.: Design of high-order digital differentiators using L 1 error criteria. IEEE Trans. Circuits Syst. II 42(4), 287–291 (1995)

    Article  MathSciNet  Google Scholar 

  4. Chitour, Y.: Time-varying high-gain observers for numerical differentiation. IEEE Trans. Automat. Contr. 47, 1565–1569 (2002)

    Article  MathSciNet  Google Scholar 

  5. Dabroom, A.M., Khalil, H.K.: Discrete-time implementation of high-gain observers for numerical differentiation. Int. J. Control 72, 1523–1537 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diop, S., Grizzle, J.W., Chaplais, F.: On numerical differentiation algorithms for nonlinear estimation. In: Proceedings of the IEEE Conference on Decision and Control. IEEE Press, New York (2000). Paper CD001876

    Google Scholar 

  7. Fliess, M.: Analyse non standard du bruit. C.R. Acad. Sci. Paris Ser. I 342, 797–802 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Fliess, M.: Critique du rapport signal à bruit en communications numériques – Questioning the signal to noise ratio in digital communications. In: International Conference in Honor of Claude Lobry, ARIMA (Revue africaine d’informatique et de Mathématiques appliquées), vol. 9, pp. 419–429. Available at http://hal.inria.fr/inria-00311719/en/ (2008)

  9. Fliess, M., Join, C., Mboup, M., Sira-Ramírez, H.: Compression différentielle de transitoires bruités. C. R. Acad. Sci. (Paris) I(339), 821–826 (2004)

    Google Scholar 

  10. Fliess, M., Sira-Ramírez, H.: Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques. In: Garnier, H., Wang, L. (eds.) Identification of Continuous-Time Models from Sampled Data, pp. 363–391. Springer (2008). Available at http://hal.inria.fr/inria-00114958/en/

  11. Fliess, M., Sira-Ramírez, H.: An algebraic framework for linear identification. ESAIM Control Optim. Calc. Variat. 9, 151–168 (2003)

    Article  MATH  Google Scholar 

  12. Hào, D.N., Schneider, A., Reinhardt, H.J.: Regularization of a non-characteristic Cauchy problem for a parabolic equation. Inverse Problems 11, 1247–1264 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haykin, S., Van Veen, B.: Signals and Systems, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  14. Ibrir, S.: Online exact differentiation and notion of asymptotic algebraic observers. IEEE Trans. Automat. Contr. 48, 2055–2060 (2003)

    Article  MathSciNet  Google Scholar 

  15. Ibrir, S.: Linear time-derivatives trackers. Automatica 40, 397–405 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khan, I.R., Ohba, R.: New finite difference formulas for numerical differentiation. J. Comput. Appl. Math. 126, 269–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76, 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lanczos, C.: Applied Analysis. Prentice-Hall, Englewood Cliffs (1956)

    Google Scholar 

  19. Liu, D.Y., Gibaru, O., Perruquetti, W.: Error analysis for a class of numerical differentiator: application to state observation. In: 48th IEEE Conference on Decision and Control, China (2009). Available at http://hal.inria.fr/inria-00437129/en/

  20. Liu, D.Y., Gibaru, O., Perruquetti, W., Fliess, M., Mboup, M.: An error analysis in the algebraic estimation of a noisy sinusoidal signal. In: 16th Mediterranean Conference on Control and Automation (MED’ 2008), Ajaccio (2008). Available at http://hal.inria.fr/inria-00300234/en/

  21. Liu, D.Y., Gibaru, O., Perruquetti, W.: Differentiation by integration with Jacobi polynomials. J. Comput. Appl. Math. (2010). doi:10.1016/j.cam.2010.12.023. Available at http://hal.inria.fr/inria-00550160

  22. Loève, M.: Probability Theory, 3rd edn. van Nostrand, New York (1963)

    MATH  Google Scholar 

  23. Lyness, J.N.: Finite-part integrals and the Euler–Maclaurin expansion. In: Zahar, R.V.M. (ed.) Approximation and Computation, Int. Ser. Numer. Math., vol. 119, pp. 397–407. Birkhäuser, Basel (1994)

    Google Scholar 

  24. Mboup, M.: Parameter estimation for signals described by differential equations. Appl. Anal. 88, 29–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mboup, M., Join, C., Fliess, M.: A revised look at numerical differentiation with an application to nonlinear feedback control. In: 15th Mediterranean Conference on Control and Automation (MED’07). Athenes, Greece (2007)

  26. Mboup, M., Join, C., Fliess, M.: Numerical differentiation with annihilators in noisy environment. Numer. Algorithms 50(4), 439–467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Murio, D.A.: The Mollification Method and the Numerical Solution of Ill-Posed Problems. Wiley, New York (1993)

    Book  Google Scholar 

  28. Murio, D.A., Mejía, C.E., Zhan, S.: Discrete mollification and automatic numerical differentiation. Comput. Math. Appl. 35, 1–16 (1998)

    Article  Google Scholar 

  29. Nakamura, G., Wang, S., Wang, Y.: Numerical differentiation for the second order derivatives of functions of two variables. J. Comput. Appl. Math. 212, 341–358 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qu, R.: A new approach to numerical differentiation and integration. Math. Comput. 24(10), 55–68 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Rader, C.M., Jackson, L.B.: Approximating noncausal IIR digital filters having arbitrary poles, including new Hilbert transformer designs, via forward/backward block recursion. IEEE Trans. Circuits Syst. I 53(12), 2779–2787 (2006)

    Article  MathSciNet  Google Scholar 

  32. Ramm, A.G., Smirnova, A.B.: On stable numerical differentiation. Math. Comput. 70, 1131–1153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rangarajana, S.K., Purushothaman, S.P.: Lanczos’ generalized derivative for higher orders. J. Comput. Appl. Math. 177, 461–465 (2005)

    Article  MathSciNet  Google Scholar 

  34. Roberts, R.A., Mullis, C.T.: Digital Signal Processing. Addison-Wesley, Reading (1987)

    MATH  Google Scholar 

  35. Parzen, E.: Stochastic Processes. Holden-Day, San Francisco (1962)

    MATH  Google Scholar 

  36. Su, Y.X., Zheng, C.H., Mueller, P.C., Duan, B.Y.: A simple improved velocity estimation for low-speed regions based on position measurements only. IEEE Trans. Control Syst. Technol. 14, 937–942 (2006)

    Article  Google Scholar 

  37. Szegö, G.: Orthogonal Polynomials, 3rd edn. AMS, Providence (1967)

    Google Scholar 

  38. Wang, Y., Jia, X., Cheng, J.: A numerical differentiation method and its application to reconstruction of discontinuity. Inverse Problems 18, 1461–1476 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Z., Wen, R.: Numerical differentiation for high orders by an integration method. J. Comput. Appl. Math. 234, 941–948 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wei, T., Hon, Y.C., Wang, Y.: Reconstruction of numerical derivatives from scattered noisy data. Inverse Problems 21, 657–672 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Gibaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, DY., Gibaru, O. & Perruquetti, W. Error analysis of Jacobi derivative estimators for noisy signals. Numer Algor 58, 53–83 (2011). https://doi.org/10.1007/s11075-011-9447-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9447-8

Keywords

Mathematics Subject Classifications (2010)

Navigation