Skip to main content
Log in

A variable step-size control algorithm for the weak approximation of stochastic differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose two local error estimates based on drift and diffusion terms of the stochastic differential equations in order to determine the optimal step-size for the next stage in an adaptive variable step-size algorithm. These local error estimates are based on the weak approximation solution of stochastic differential equations with one-dimensional and multi-dimensional Wiener processes. Numerical experiments are presented to illustrate the effectiveness of this approach in the weak approximation of several standard test problems including SDEs with small noise and scalar and multi-dimensional Wiener processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alcock, J., Burrage, K.: A note on the balanced method. BIT Numer. Math. 46, 689–710 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bastani, A.F., Hosseini, S.M.: A new adaptive Runge–Kutta method for stochastic differential equations. J. Comput. Appl. Math. 206, 631–644 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bastani, A.F., Hosseini, S.M.: On mean-square stability properties of a new adaptive stochastic Runge–Kutta method. J. Comput. Appl. Math. 224, 556–564 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burrage, K., Burrage, P.M.: High strong order explicit Runge–Kutta methods for stochastic ordinary differential equations. Appl. Numer. Math. 22, 81–101 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burrage, K., Burrage, P.M.: Order conditions of stochastic Runge–Kutta methods by B-series. SIAM J. Numer. Anal. 38(5), 1626–1646 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Burrage, K., Burrage, P.M.: A variable stepsize implementation for stochastic differential equations. SIAM J. Sci. Comput. 24(3), 848–864 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  8. Call, D.H., Reeves, R.F.: Error estimation in Runge–Kutta procedures. Commun. ACM 1(9), 78 (1958)

    Article  Google Scholar 

  9. Gaines, J.G., Lyons, T.J.: Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57(5), 1455–1484 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hairer, E., N∅rsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Berlin (1993)

    MATH  Google Scholar 

  11. Hofmann, N.: Beiträge zur schwachen Approximation stochastischer Differentialgleichungen. Ph.D. thesis, Humboldt-Universität zu Berlin (1995)

  12. Kloeden, P.E., Platen, E., Schurz, H.: Numerical Solution of SDE Through Computer Experiments. Springer, Berlin (1994)

    MATH  Google Scholar 

  13. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1999)

    Google Scholar 

  14. Küpper, D., Lehn, J., RöBler, A.: A step size control algorithm for the weak approximation of stochastic differential equations. Numer. Algorithms 44, 335–346 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lamba, H.: An adaptive timestepping algorithm for stochastic differential equations. J. Comput. Appl. Math. 161(2), 417–430 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mauthner, S.: Step size control in the numerical solution of stochastic differential equations. J. Comput. Appl. Math. 100, 93–109 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mauthner, S.: Schrittweitensteuerung bei der numerischen Lösung stochastischer Differentialgleichungen. VDI, Düsseldorf, Reihe 10, Bd. 578 (1999)

  18. RöBler, A.: Runge–Kutta methods for the numerical solution of stochastic differential equations. Ph.D. thesis, Darmstadt University of Technology, Aachen, Shaker Verlag (2003)

  19. RöBler, A.: An adaptive discretization algorithm for the weak approximation of stochastic differential equations. Proc. Appl. Math. Mech. 4(1), 19–22 (2004)

    Article  Google Scholar 

  20. RöBler, A.: Rooted tree analysis for order conditions of stochastic Runge–Kutta methods for the weak approximation of stochastic differential equations. Stoch. Anal. Appl. 24(1), 97–134 (2006)

    Article  MathSciNet  Google Scholar 

  21. RöBler, A.: Runge–Kutta methods for Itô stochastic differential equations with scalar noise. BIT 46(1), 97–110 (2006)

    Article  MathSciNet  Google Scholar 

  22. Römisch, W., Winkler, R.: Stepsize control for mean-squar numerical methods for stochastic differential equations with small noise. SIAM J. Sci. Comput. 28(2), 604–625 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Szepessy, A., Tempone, R., Zouraris, G.: Adaptive weak approximation of stochastic differential equations. Commun. Pure Appl. Math. 54(10), 1169–1214 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tocino, A., Vigo-Aguiar, J.: Weak second order conditions for stochastic Runge–Kutta methods. SIAM J. Sci. Comput. 24(2), 507–523 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohammad Hosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valinejad, A., Hosseini, S.M. A variable step-size control algorithm for the weak approximation of stochastic differential equations. Numer Algor 55, 429–446 (2010). https://doi.org/10.1007/s11075-010-9363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9363-3

Keywords

Navigation